Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 37(22): 4771-3, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164908

ABSTRACT

We demonstrate wavelength-tunable, air-stable and nontoxic phosphor materials based on silicon quantum dots (SiQDs). The phosphors, which are composed of micrometer-size silicon particles with attached SiQDs, are synthesized by an electrochemical etching method under ambient conditions. The photoluminescence (PL) peak wavelength can be controlled by the SiQD size due to quantum confinement effect, as well as the surface passivation chemistry of SiQDs. The red-emitting phosphors have PL quantum yield equal to 17%. The SiQD-phosphors can be embedded in polymers and efficiently excited by 405 nm light-emitting diodes for potential general lighting applications.

2.
Nanotechnology ; 21(19): 195306, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20400815

ABSTRACT

Direct-write nanomanufacturing with scanning beams and probes is flexible and can produce high quality products, but it is normally slow and expensive to raster point-by-point over a pattern. We demonstrate the use of an accelerated direct-write nanomanufacturing method called 'orchestrated structure evolution' (OSE), where a direct-write tool patterns a small number of growth 'seeds' that subsequently grow into the final thin film pattern. Through control of seed size and spacing, it is possible to vary the ratio of 'top-down' to 'bottom-up' character of the patterning processes, ranging from conventional top-down raster patterning to nearly pure bottom-up space-filling via seed growth. Electron beam lithography (EBL) and copper electrodeposition were used to demonstrate trade-offs between process time and product quality over nano- to microlength scales. OSE can reduce process times for high-cost EBL patterning by orders of magnitude, at the expense of longer (but inexpensive) copper electrodeposition processing times. We quantify the degradation of pattern quality that accompanies fast OSE patterning by measuring deviations from the desired patterned area and perimeter. We also show that the density of OSE-induced grain boundaries depends upon the seed separation and size. As the seed size is reduced, the uniformity of an OSE film becomes more dependent on details of seed nucleation processes than normally seen for conventionally patterned films.

SELECTION OF CITATIONS
SEARCH DETAIL
...