Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(45): 31759-62, 1999 Nov 05.
Article in English | MEDLINE | ID: mdl-10542195

ABSTRACT

The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. Reduced proteins are the preferred thiol substrates of this secreted enzyme. The egg white oxidase shows an average 64% identity (from randomly distributed peptides comprising more than 30% of the protein sequence) to a human protein, Quiescin Q6, involved in growth regulation. Q6 is strongly expressed when fibroblasts enter reversible quiescence (Coppock, D. L., Cina-Poppe, D., Gilleran, S. (1998) Genomics 54, 460-468). A peptide antibody against Q6 cross-reacts with both the egg white enzyme and a flavin-linked sulfhydryl oxidase isolated from bovine semen. Sequence analyses show that the egg white oxidase joins human Q6, bone-derived growth factor, GEC-3 from guinea pig, and homologs found in a range of multicellular organisms as a member of a new protein family. These proteins are formed from the fusion of thioredoxin and ERV motifs. In contrast, the flavin-linked sulfhydryl oxidase from Aspergillus niger is related to the pyridine nucleotide-dependent disulfide oxidoreductases, and shows no detectable sequence similarity to this newly recognized protein family.


Subject(s)
Flavins/metabolism , Oxidoreductases/chemistry , Thioredoxins/chemistry , Amino Acid Sequence , Animals , Cattle , Cell Cycle , Cell Line , Chickens , Egg White , Extracellular Matrix/physiology , Fibroblasts/physiology , Humans , Molecular Sequence Data , Oxidoreductases Acting on Sulfur Group Donors , Sequence Homology, Amino Acid
2.
J Biol Chem ; 274(32): 22147-50, 1999 Aug 06.
Article in English | MEDLINE | ID: mdl-10428777

ABSTRACT

Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed.


Subject(s)
Disulfides/metabolism , Oxidoreductases/metabolism , Sulfhydryl Compounds/metabolism , Animals , Chickens , Egg White , Flavin-Adenine Dinucleotide/metabolism , Flavoproteins/metabolism , Muramidase/metabolism , Oxidation-Reduction , Peptides/metabolism , Protein Disulfide-Isomerases/metabolism , Proteins/metabolism
3.
Biochemistry ; 38(10): 3211-7, 1999 Mar 09.
Article in English | MEDLINE | ID: mdl-10074377

ABSTRACT

The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with reduction of oxygen to hydrogen peroxide. The oxidase contains FAD and a redox-active cystine bridge and accepts a total of 4 electrons per active site. Dithiothreitol (DTT; the best low molecular weight substrate known) reduces the enzyme disulfide bridge with a limiting rate of 502/s at 4 degrees C, pH 7.5, yielding a thiolate-to-flavin charge-transfer complex. Further reduction to EH4 is limited by the slow internal transfer of reducing equivalents from enzyme dithiol to oxidized flavin (3.3/s). In the oxidative half of catalysis, oxygen rapidly converts EH4 to EH2, but Eox appearance is limited by the slow internal redox equilibration. During overall turnover with DTT, the thiolate-to-flavin charge-transfer complex accumulates with an apparent extinction coefficient of 4.9 mM-1 cm-1 at 560 nm. In contrast, glutathione (GSH) is a much slower reductant of the oxidase to the EH2 level and shows a kcat/Km 100-fold smaller than DTT. Full reduction of EH2 by GSH shows a limiting rate of 3.6/s at 4 degrees C comparable to that seen with DTT. Reduced RNase is an excellent substrate of the enzyme, with kcat/Km per thiol some 1000- and 10-fold better than GSH and DTT, respectively. Enzyme-monitored steady-state turnover shows that RNase is a facile reductant of the oxidase to the EH2 state. This work demonstrates the basic similarity in the mechanism of turnover between all of these three substrates. A physiological role for sulfhydryl oxidase in the formation of disulfide bonds in secreted proteins is discussed.


Subject(s)
Disulfides/chemistry , Egg Proteins/chemistry , Oxidoreductases/chemistry , Anaerobiosis , Animals , Catalysis , Chickens , Dithiothreitol/chemistry , Egg White , Electrons , Glutathione/chemistry , Kinetics , Oxidation-Reduction , Oxygen/chemistry , Ribonucleases/chemistry , Spectrophotometry , Substrate Specificity
4.
J Biol Chem ; 271(48): 30510-6, 1996 Nov 29.
Article in English | MEDLINE | ID: mdl-8940019

ABSTRACT

A dimeric glycoprotein containing one FAD per approximately 80,000 Mr subunit has been isolated from chicken egg white and found to have sulfhydryl oxidase activity with a range of small molecular weight thiols. Dithiothreitol was the best substrate of those tested, with a turnover number of 1030/min, a Km of 150 microM, and a pH optimum of about 7.5. Oxidation of thiol substrates generates hydrogen peroxide in aerobic solution. Anaerobically, the ferricenium ion is a facile alternative electron acceptor. Reduction of the oxidase with dithionite or dithiothreitol under anaerobic conditions yields a two-electron intermediate (EH2) showing a charge transfer band (lambdamax 560 nm; epsilonobs 2.5 mM-1 cm-1). Complete bleaching of the flavin and discharge of the charge transfer complex require a total of four electrons. Borohydride and catalytic photoreduction give the same spectral changes. EH2, but not the oxidized enzyme, is inactivated by iodoacetamide with alkylation of 2.7 cysteine residues/subunit. These data indicate that the oxidase contains a redox-active disulfide bridge generating a thiolate to oxidized flavin charge transfer complex at the EH2 level. Sulfite treatment does not form the expected flavin adduct with the native enzyme but cleaves the active site disulfide, yielding an air-stable EH2-like species. The close functional resemblance of the oxidase to the pyridine nucleotide-dependent disulfide oxidoreductase family is discussed.


Subject(s)
Ovum/enzymology , Oxidoreductases/isolation & purification , Animals , Chickens , Disulfides/chemistry , Dithiothreitol/metabolism , Egg White , Flavoproteins/isolation & purification , Hydrogen-Ion Concentration , Oxidation-Reduction , Oxidoreductases/metabolism , Spectrophotometry, Ultraviolet , Substrate Specificity , Sulfites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...