Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875703

ABSTRACT

Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.

2.
J Am Chem Soc ; 145(36): 19715-19726, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642952

ABSTRACT

[HCo(CO)x(bisphosphine)](BF4), x = 1-3, is a highly active hydroformylation catalyst system, especially for internal branched alkenes. In situ infrared spectroscopy (IR), electron paramagnetic resonance (EPR), and nuclear magnetic resonance studies support the proposed catalyst formulation. IR studies reveal the formation of a dicationic Co(I) paramagnetic CO-bridged dimer, [Co2(µ-CO)2(CO)(bisphosphine)2]2+, at lower temperatures formed from the reaction of two catalyst complexes via the elimination of H2. DFT studies indicate a dimer structure with square-pyramidal and tetrahedral cobalt centers. This monomer-dimer equilibrium is analogous to that seen for HCo(CO)4, reacting to eliminate H2 and form Co2(CO)8. EPR studies on the catalyst show a high-spin (S = 3/2) Co(II) complex. Reaction studies are presented that support the cationic Co(II) bisphosphine catalyst as the catalyst species present in this system and minimize the possible role of neutral Co(I) species, HCo(CO)4 or HCo(CO)3(phosphine), as catalysts.

3.
Science ; 367(6477): 542-548, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32001650

ABSTRACT

The cobalt complexes HCo(CO)4 and HCo(CO)3(PR3) were the original industrial catalysts used for the hydroformylation of alkenes through reaction with hydrogen and carbon monoxide to produce aldehydes. More recent and expensive rhodium-phosphine catalysts are hundreds of times more active and operate under considerably lower pressures. Cationic cobalt(II) bisphosphine hydrido-carbonyl catalysts that are far more active than traditional neutral cobalt(I) catalysts and approach rhodium catalysts in activity are reported here. These catalysts have low linear-to-branched (L:B) regioselectivity for simple linear alkenes. However, owing to their high alkene isomerization activity and increased steric effects due to the bisphosphine ligand, they have high L:B selectivities for internal alkenes with alkyl branches. These catalysts exhibit long lifetimes and substantial resistance to degradation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...