Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 200(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29109182

ABSTRACT

The heteromeric acyl coenzyme A (acyl-CoA) dehydrogenase FadE28-FadE29 and the enoyl-CoA hydratase ChsH1-ChsH2, encoded by genes within the intracellular growth (igr) operon of Mycobacterium tuberculosis, catalyze the dehydrogenation of the cholesterol metabolite 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA), with a 3-carbon side chain, and subsequent hydration of the product 3-oxo-4,17-pregnadiene-20-carboxyl-CoA (3-OPDC-CoA) to form 17-hydroxy-3-oxo-4-pregnene-20-carboxyl-CoA (17-HOPC-CoA). The gene downstream of chsH2, i.e., ltp2, was expressed in recombinant Rhodococcus jostii RHA1 in combination with other genes within the igr operon. His-tagged Ltp2 copurified with untagged ChsH1-ChsH2, ChsH2, or the C-terminal domain of ChsH2, which contains a domain of unknown function (DUF35). Ltp2 in association with ChsH1-ChsH2 or just the DUF35 domain of ChsH2 was shown to catalyze the retroaldol cleavage of 17-HOPC-CoA to form androst-4-ene-3,17-dione and propionyl-CoA. Steady-state kinetic analysis using the Ltp2-DUF35 complex showed that the aldolase had optimal activity at pH 7.5, with a Km of 6.54 ± 0.90 µM and a kcat of 159 ± 8.50 s-1 ChsH1-ChsH2 could hydrate only about 30% of 3-OPDC-CoA, but this unfavorable equilibrium could be overcome when the aldolase was present to remove the hydrated product, providing a rationale for the close association of the aldolase with the hydratase. Homologs of ChsH1, ChsH2, and Ltp2 are found in steroid-degrading Gram-positive and Gram-negative bacteria, suggesting that side chains of diverse steroids may be cleaved by aldolases in the bacteria.IMPORTANCE The C-C bond cleavage of the D-ring side chain of cholesterol was shown to be catalyzed by an aldolase. The aldolase associates with the hydratase that catalyzes the preceding reaction in the cholesterol side chain degradation pathway. These enzymes are encoded by genes within the intracellular growth (igr) operon of M. tuberculosis, and the operon was demonstrated previously to be linked to the pathogenicity and persistence of the bacteria in macrophages and in mice.


Subject(s)
Cholesterol/metabolism , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Mycobacterium tuberculosis/enzymology , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Cholesterol/chemistry , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Fructose-Bisphosphate Aldolase/biosynthesis , Hydrogen-Ion Concentration , Kinetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Operon , Pregnenes/chemistry , Pregnenes/metabolism , Recombinant Proteins/metabolism , Rhodococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...