Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(24): 9123-9128, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34102845

ABSTRACT

Improvement in the optoelectronic performance of halide perovskite semiconductors requires the identification and suppression of nonradiative carrier trapping processes. The iodine interstitial has been established as a deep level defect and implicated as an active recombination center. We analyze the quantum mechanics of carrier trapping. Fast and irreversible electron capture by the neutral iodine interstitial is found. The effective Huang-Rhys factor exceeds 300, indicative of the strong electron-phonon coupling that is possible in soft semiconductors. The accepting phonon mode has a frequency of 53 cm-1 and has an associated electron capture coefficient of 1 × 10-10 cm3 s-1. The inverse participation ratio is used to quantify the localization of phonon modes associated with the transition. We infer that suppression of octahedral rotations is an important factor to enhance defect tolerance.

2.
Chem Sci ; 11(43): 11699-11704, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-34123200

ABSTRACT

Radical electrons tend to localize on individual molecules, resulting in an insulating (Mott-Hubbard) bandgap in the solid state. Herein, we report the crystal structure and intrinsic electronic properties of the first single crystal of a π-radical metal, tetrathiafulvalene-extended dicarboxylate (TED). The electrical conductivity is up to 30 000 S cm-1 at 2 K and 2300 S cm-1 at room temperature. Temperature dependence of resistivity obeys a T 3 power-law above T > 100 K, indicating a new type of metal. X-ray crystallographic analysis clarifies the planar TED molecule, with a symmetric intramolecular hydrogen bond, is stacked along longitudinal (the a-axis) and transverse (the b-axis) directions. The π-orbitals are distributed to avoid strong local interactions. First-principles electronic calculations reveal the origin of the metallization giving rise to a wide bandwidth exceeding 1 eV near the Fermi level. TED demonstrates the effect of two-dimensional stacking of π-orbitals on electron delocalization, where a high carrier mobility of 31.6 cm2 V-1 s-1 (113 K) is achieved.

3.
Chem Sci ; 11(43): 11945-11946, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-34125111

ABSTRACT

[This corrects the article DOI: 10.1039/D0SC03521A.].

4.
Chem Sci ; 12(6): 2276-2285, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-34163994

ABSTRACT

Charge transport is well understood in both highly ordered materials (band conduction) or highly disordered ones (hopping conduction). In moderately disordered materials-including many organic semiconductors-the approximations valid in either extreme break down, making it difficult to accurately model the conduction. In particular, describing wavefunction delocalisation requires a quantum treatment, which is difficult in disordered materials that lack periodicity. Here, we present the first three-dimensional model of partially delocalised charge and exciton transport in materials in the intermediate disorder regime. Our approach is based on polaron-transformed Redfield theory, but overcomes several computational roadblocks by mapping the quantum-mechanical techniques onto kinetic Monte Carlo. Our theory, delocalised kinetic Monte Carlo (dKMC), shows that the fundamental physics of transport in moderately disordered materials is that of charges hopping between partially delocalised electronic states. Our results reveal why standard kinetic Monte Carlo can dramatically underestimate mobilities even in disordered organic semiconductors, where even a little delocalisation can substantially enhance mobilities, as well as showing that three-dimensional calculations capture important delocalisation effects neglected in lower-dimensional approximations.

5.
J Phys Chem Lett ; 9(6): 1359-1364, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29494769

ABSTRACT

Because of the low dielectric constant, charges in organic solar cells must overcome a strong Coulomb attraction in order to separate. It has been widely argued that intermolecular delocalization would assist charge separation by increasing the effective initial electron-hole separation in a charge-transfer state, thus decreasing their barrier to separation. Here we show that this is not the case: including more than a small amount of delocalization in models of organic solar cells leads to an increase in the free-energy barrier to charge separation. Therefore, if delocalization were to improve the charge separation efficiency, it would have to do so through nonequilibrium kinetic effects that are not captured by a thermodynamic treatment of the barrier height.

6.
J Phys Chem Lett ; 8(17): 4061-4068, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28777583

ABSTRACT

In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC70BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.

7.
J Phys Chem Lett ; 7(22): 4495-4500, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27783509

ABSTRACT

Although organic heterojunctions can separate charges with near-unity efficiency and on a subpicosecond time scale, the full details of the charge-separation process remain unclear. In typical models, the Coulomb binding between the electron and the hole can exceed the thermal energy kBT by an order of magnitude, suggesting that it is impossible for the charges to separate before recombining. Here, we consider the entropic contribution to charge separation in the presence of disorder and find that even modest amounts of disorder have a decisive effect, reducing the charge-separation barrier to about kBT or eliminating it altogether. Therefore, the charges are usually not thermodynamically bound at all and could separate spontaneously if the kinetics otherwise allowed it. Our conclusion holds despite the worst-case assumption of localized, thermalized carriers and is only strengthened if mechanisms like delocalization or "hot" states are also present.

SELECTION OF CITATIONS
SEARCH DETAIL
...