Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 157: 112616, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34662691

ABSTRACT

Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.


Subject(s)
Mycotoxins/toxicity , Trichothecenes/toxicity , Animals , Aquatic Organisms/drug effects , Fishes , Neurosecretory Systems/drug effects
2.
Article in English | MEDLINE | ID: mdl-34147683

ABSTRACT

Hepatic glucuronidation represents an important phase II biotransformation reaction in both mammals and fish. The kinetic characteristics of uridine 5'-diphosphate (UDP) glucuronosyltransferases (UDPGTs) in rainbow trout liver microsomes were examined using p-nitrophenol (p-NP) as an aglycone and UDP-glucuronic acid (UDPGA) as a glucuronyl donor according to an existing protocol. The kinetic data obtained with varying concentrations of p-NP best fit the Hill equation and UDPGT activity was successfully induced following an i.p. injection of ß-naphthoflavone (ß-NF). The assay was subsequently adapted to a microplate method for determination of UDPGT activity in microsomal samples obtained from rainbow trout as well as Nile tilapia. In contrast to rainbow trout, UDPGT activity of Nile tilapia was best described by Michaelis-Menten kinetics. Based on the linearity of p-NP glucuronide formation, a p-NP concentration of 0.60 mM and a UDPGA concentration of 6.89 mM were determined to be suitable for assaying UDPGT activity in samples from rainbow trout and Nile tilapia. The microplate method offers several advantages over the historical assay; most notably it enables the observation of successive kinetics which ensures that enzyme activity is calculated in the most linear (initial) rate of the reaction. It also provides practical advantages in terms of ease-of-use and efficiency. This may be relevant to researchers investigating exposure of wild or farmed fish to environmental or feed-borne contaminants which are substrates of UDPGTs.


Subject(s)
Cichlids/metabolism , Glucuronosyltransferase/metabolism , Liver/enzymology , Oncorhynchus mykiss/metabolism , Animals , Cichlids/genetics , Gene Expression Regulation, Enzymologic , Glucuronosyltransferase/genetics , Oncorhynchus mykiss/genetics , Species Specificity
3.
Toxins (Basel) ; 7(6): 1929-44, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26035489

ABSTRACT

An 8-week feeding trial was conducted to examine effects of wheat naturally contaminated with Fusarium mycotoxins (deoxynivalenol, DON 41 mg·kg(-1)) on growth performance and selected health indices of red tilapia (Oreochromis niloticus × O. mossambicus; initial weight = 4.3 g/fish). Five experimental diets were formulated by replacement of clean wheat with naturally contaminated wheat resulting in graded levels of DON and zearalenone (ZEN) (Diet 1 0.07/0.01, Diet 2 0.31/0.09, Diet 3 0.50/0.21, Diet 4 0.92/0.37 and Diet 5 1.15/0.98 mg·kg(-1)). Groups of 50 fish were randomly allocated into each of 20 aquaria and fed to near-satiety for eight weeks. Growth rate, feed intake and feed efficiency of fish fed the experimental diets decreased linearly with increasing levels of Fusarium mycotoxins (p < 0.05). Although growth depression was associated with feeding diets naturally contaminated with Fusarium mycotoxins, especially DON, no biochemical and histopathological parameters measured in blood and liver appeared affected by Fusarium mycotoxin concentrations of diets (p > 0.05). Though there was no clear evidence of overt DON toxicity to red tilapia, it is recommended that feed ingredients should be screened for Fusarium mycotoxin contamination to ensure optimal growth performance.


Subject(s)
Flour , Food Contamination , Tilapia , Trichothecenes/toxicity , Triticum , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Diet , Eating , Fusarium , Hematocrit , Liver/drug effects , Liver/pathology , Tilapia/blood , Tilapia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...