Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 134(1): 351-366, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33084930

ABSTRACT

KEY MESSAGE: Two key barley genes independently control anthesis and senescence timing, enabling the manipulation of grain fill duration, grain size/plumpness, and grain protein concentration. Plant developmental processes such as flowering and senescence have direct effects on cereal yield and quality. Previous work highlighted the importance of two tightly linked genes encoding a glycine-rich RNA-binding protein (HvGR-RBP1) and a NAC transcription factor (HvNAM1), controlling barley anthesis timing, senescence, and percent grain protein. Varieties that differ in HvGR-RBP1 expression, 'Karl'(low) and 'Lewis'(high), also differ in sequence 1 KB upstream of translation start site, including an ~ 400 bp G rich insertion in the 5'-flanking region of the 'Karl' allele, which could disrupt gene expression. To improve malt quality, the (low-grain protein, delayed-senescence) 'Karl' HvNAM1 allele was introgressed into Montana germplasm. After several seasons of selection, the resulting germplasm was screened for the allelic combinations of HvGR-RBP1 and HvNAM1, finding lines combining 'Karl' alleles for both genes (-/-), lines combining 'Lewis' (functional, expressed) HvGR-RBP1 with 'Karl' HvNAM1 alleles ( ±), and lines combining 'Lewis' alleles for both genes (+ / +). Field experiments indicate that the functional ('Lewis,' +) HvGR-RBP1 allele is associated with earlier anthesis and with slightly shorter plants, while the 'Karl' (-) HvNAM1 allele delays maturation. Genotypes carrying the ± allele combination therefore had a significantly (3 days) extended grain fill duration, leading to a higher percentage of plump kernels, slightly enhanced test weight, and lower grain protein concentration when compared to the other allele combinations. Overall, our data suggest an important function for HvGR-RBP1 in the control of barley reproductive development and set the stage for a more detailed functional analysis of this gene.


Subject(s)
Hordeum/genetics , Plant Proteins/genetics , RNA-Binding Proteins/genetics , Seeds/growth & development , Transcription Factors/genetics , Chromosome Mapping , Edible Grain/genetics , Edible Grain/growth & development , Genotype , Glycine , Hordeum/growth & development , Phenotype , Promoter Regions, Genetic
2.
Biol Reprod ; 84(3): 455-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20980687

ABSTRACT

The homeodomain CUX1 protein exists as multiple isoforms that arise from proteolytic processing of a 200-kDa protein or an alternate splicing or from the use of an alternate promoter. The 200-kDa CUX1 protein is highly expressed in the developing kidney, where it functions to regulate cell proliferation. Transgenic mice ectopically expressing the 200-kDa CUX1 protein develop renal hyperplasia associated with reduced expression of the cyclin kinase inhibitor p27. A 55-kDa CUX1 isoform is expressed exclusively in the testes. We determined the pattern and timing of CUX1 protein expression in developing testes. CUX1 expression was continuous in Sertoli cells from prepubertal testes but became cyclic when spermatids appeared. In testes from mature mice, CUX1 was highly expressed only in round spermatids at stages IV-V of spermatogenesis, in both spermatids and Sertoli cells at stages VI-X of spermatogenesis, and only in Sertoli cells at stage XI of spermatogenesis. While most of the seminiferous tubules in wild-type mice were between stages VI and X of spermatogenesis, there was a significant reduction in the percentage of seminiferous tubules between stages VI and X in Cux1 transgenic mice and a significant increase in the percentage of seminiferous tubules in stages IV-V and XI. Moreover, CUX1 was not expressed in proliferating cells in testes from either wild-type or transgenic mice. Thus, unlike the somatic form of CUX1, which has a role in cell proliferation, the testis-specific form of CUX1 is not involved in cell division and appears to play a role in signaling between Sertoli cells and spermatids.


Subject(s)
Homeodomain Proteins/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Sertoli Cells/metabolism , Spermatids/metabolism , Spermatogenesis/genetics , Animals , Cell Communication/genetics , Cell Communication/physiology , Cell Division/genetics , Cell Division/physiology , Gene Expression Regulation/physiology , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Male , Mice , Mice, Transgenic , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Repressor Proteins/metabolism , Repressor Proteins/physiology , Sertoli Cells/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Spermatids/physiology , Spermatogenesis/physiology , Testis/cytology , Testis/metabolism , Testis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...