Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38872463

ABSTRACT

The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.

2.
Cell Death Differ ; 31(3): 360-377, 2024 03.
Article in English | MEDLINE | ID: mdl-38365970

ABSTRACT

Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.


Subject(s)
Ovarian Neoplasms , Humans , Female , Cell Movement , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Wnt Signaling Pathway , Epithelial-Mesenchymal Transition , RNA-Binding Proteins/metabolism
3.
Sci Rep ; 9(1): 11262, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375704

ABSTRACT

Tropomyosins (Tpm) determine the functional capacity of actin filaments in an isoform-specific manner. The primary isoform in cancer cells is Tpm3.1 and compounds that target Tpm3.1 show promising results as anti-cancer agents both in vivo and in vitro. We have determined the molecular mechanism of interaction of the lead compound ATM-3507 with Tpm3.1-containing actin filaments. When present during co-polymerization of Tpm3.1 with actin, 3H-ATM-3507 is incorporated into the filaments and saturates at approximately one molecule per Tpm3.1 dimer and with an apparent binding affinity of approximately 2 µM. In contrast, 3H-ATM-3507 is poorly incorporated into preformed Tpm3.1/actin co-polymers. CD spectroscopy and thermal melts using Tpm3.1 peptides containing the C-terminus, the N-terminus, and a combination of the two forming the overlap junction at the interface of adjacent Tpm3.1 dimers, show that ATM-3507 shifts the melting temperature of the C-terminus and the overlap junction, but not the N-terminus. Molecular dynamic simulation (MDS) analysis predicts that ATM-3507 integrates into the 4-helix coiled coil overlap junction and in doing so, likely changes the lateral movement of Tpm3.1 across the actin surface resulting in an alteration of filament interactions with actin binding proteins and myosin motors, consistent with the cellular impact of ATM-3507.


Subject(s)
Actin Cytoskeleton/metabolism , Antineoplastic Agents/pharmacology , Tropomyosin/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Circular Dichroism , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Neoplasms/drug therapy , Protein Conformation, alpha-Helical/drug effects , Protein Domains/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Multimerization/drug effects , Protein Multimerization/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Structure-Activity Relationship , Thermodynamics , Tropomyosin/metabolism , Tropomyosin/ultrastructure
4.
Sci Rep ; 8(1): 4604, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545590

ABSTRACT

The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 ß-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.


Subject(s)
Actin Cytoskeleton/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Tropomyosin/antagonists & inhibitors , Actin Cytoskeleton/drug effects , Animals , Glucose/administration & dosage , Insulin-Secreting Cells/drug effects , Male , Mice , Mice, Knockout , Tropomyosin/physiology
5.
J Cell Sci ; 131(6)2018 03 19.
Article in English | MEDLINE | ID: mdl-29487177

ABSTRACT

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Tropomyosin/metabolism , Actin Cytoskeleton/genetics , Actins/genetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Myosin Heavy Chains , Nonmuscle Myosin Type IIA/genetics , Protein Binding , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Tropomyosin/genetics
6.
Mol Cancer Ther ; 16(8): 1555-1565, 2017 08.
Article in English | MEDLINE | ID: mdl-28522589

ABSTRACT

Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.1, using a first-in-class compound, TR100. Here, we screened over 200 other antitropomyosin analogues for anticancer and on-target activity using a series of in vitro cell-based and biochemical assays. ATM-3507 was selected as the new lead based on its ability to disable Tpm3.1-containing filaments, its cytotoxicity potency, and more favorable drug-like characteristics. We tested ATM-3507 and TR100 alone and in combination with antimicrotubule agents against neuroblastoma models in vitro and in vivo Both ATM-3507 and TR100 showed a high degree of synergy in vitro with vinca alkaloid and taxane antimicrotubule agents. In vivo, combination-treated animals bearing human neuroblastoma xenografts treated with antitropomyosin combined with vincristine showed minimal weight loss, a significant and profound regression of tumor growth and improved survival compared with control and either drug alone. Antitropomyosin combined with vincristine resulted in G2-M phase arrest, disruption of mitotic spindle formation, and cellular apoptosis. Our data suggest that small molecules targeting the actin cytoskeleton via tropomyosin sensitize cancer cells to antimicrotubule agents and are tolerated together in vivo This combination warrants further study. Mol Cancer Ther; 16(8); 1555-65. ©2017 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Microtubules/metabolism , Neoplasms/drug therapy , Tropomyosin/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , G2 Phase/drug effects , Humans , Mice, Nude , Microtubules/drug effects , Mitosis/drug effects , Neoplasms/pathology , Tropomyosin/metabolism , Vincristine/pharmacology
7.
Sci Rep ; 6: 19816, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26804624

ABSTRACT

The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development.


Subject(s)
Actin Cytoskeleton/metabolism , Protein Isoforms/metabolism , Tropomyosin/metabolism , Actin Cytoskeleton/chemistry , Animals , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Multimerization/drug effects , Rabbits , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tropomyosin/antagonists & inhibitors , Tropomyosin/chemistry
8.
Mol Biol Cell ; 26(13): 2475-90, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25971798

ABSTRACT

ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.


Subject(s)
Actin Cytoskeleton/physiology , MAP Kinase Signaling System/physiology , Tropomyosin/physiology , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Active Transport, Cell Nucleus , Animals , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Tropomyosin/genetics , Tropomyosin/metabolism
9.
Brain ; 134(Pt 12): 3516-29, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22067542

ABSTRACT

Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.


Subject(s)
Muscle Weakness/genetics , Muscle, Skeletal/pathology , Myopathies, Nemaline/drug therapy , Myopathies, Nemaline/genetics , Tyrosine/therapeutic use , Animals , Disease Models, Animal , Hand Strength , Hypertrophy/genetics , Hypertrophy/pathology , Mice , Mice, Transgenic , Muscle Contraction/genetics , Muscle Weakness/drug therapy , Muscle Weakness/pathology , Mutation , Myopathies, Nemaline/pathology , Phenotype
10.
Bioarchitecture ; 1(1): 49-59, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21866263

ABSTRACT

The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, ßTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80-100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function.

11.
Eur J Cell Biol ; 89(7): 489-98, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20223554

ABSTRACT

Previous studies have shown that the overexpression of tropomyosins leads to isoform-specific alterations in the morphology of subcellular compartments in neuronal cells. Here we have examined the role of the most abundant set of isoforms from the gamma-Tm gene by knocking out the alternatively spliced C-terminal exon 9d. Despite the widespread location of exon 9d-containing isoforms, mice were healthy and viable. Compensation by products containing the C-terminal exon 9c was seen in the adult brain. While neurons from these mice show a mild phenotype at one day in culture, neurons revealed a significant morphological alteration with an increase in the branching of dendrites and axons after four days in culture. Our data suggest that this effect is mediated via altered stability of actin filaments in the growth cones. We conclude that exon 9d-containing isoforms are not essential for survival of neuronal cells and that isoform choice from the gamma-Tm gene is flexible in the brain. Although functional redundancy does not exist between tropomyosin genes, these results suggest that significant redundancy exists between products from the same gene.


Subject(s)
Neurogenesis/physiology , Tropomyosin/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Axons/metabolism , Brain/cytology , Brain/metabolism , Cell Line , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , Mice , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Phenotype , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tropomyosin/genetics
12.
J Biol Chem ; 285(7): 4715-24, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20007321

ABSTRACT

The GTF2IRD1 gene is of principal interest to the study of Williams-Beuren syndrome (WBS). This neurodevelopmental disorder results from the hemizygous deletion of a region of chromosome 7q11.23 containing 28 genes including GTF2IRD1. WBS is thought to be caused by haploinsufficiency of certain dosage-sensitive genes within the deleted region, and the feature of supravalvular aortic stenosis (SVAS) has been attributed to reduced elastin caused by deletion of ELN. Human genetic mapping data have implicated two related genes GTF2IRD1 and GTF2I in the cause of some the key features of WBS, including craniofacial dysmorphology, hypersociability, and visuospatial deficits. Mice with mutations of the Gtf2ird1 allele show evidence of craniofacial abnormalities and behavioral changes. Here we show the existence of a negative autoregulatory mechanism that controls the level of GTF2IRD1 transcription via direct binding of the GTF2IRD1 protein to a highly conserved region of the GTF2IRD1 promoter containing an array of three binding sites. The affinity for this protein-DNA interaction is critically dependent upon multiple interactions between separate domains of the protein and at least two of the DNA binding sites. This autoregulatory mechanism leads to dosage compensation of GTF2IRD1 transcription in WBS patients. The GTF2IRD1 promoter represents the first established in vivo gene target of the GTF2IRD1 protein, and we use it to model its DNA interaction capabilities.


Subject(s)
DNA/metabolism , Williams Syndrome/metabolism , Alleles , Animals , Cell Line , Computational Biology , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Humans , Mice , Mice, Mutant Strains , Models, Biological , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding/genetics , Protein Binding/physiology , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Trans-Activators/metabolism , Williams Syndrome/genetics
13.
Stem Cells ; 27(5): 1098-108, 2009 May.
Article in English | MEDLINE | ID: mdl-19415780

ABSTRACT

Cell replacement therapy using stem cell transplantation holds much promise in the field of regenerative medicine. In the area of hematopoietic stem cell transplantation, O(6)-methylguanine-DNA methyltransferase MGMT (P140K) gene-mediated drug resistance-based in vivo enrichment strategy of donor stem cells has been shown to achieve up to 75%-100% donor cell engraftment in the host's hematopoietic stem cell compartment following repeated rounds of selection. This strategy, however, has not been applied in any other organ system. We tested the feasibility of using this MGMT (P140K)-mediated enrichment strategy for cell transplantation in skeletal muscles of mice. We demonstrate that muscle cells expressing an MGMT (P140K) drug resistance gene can be protected and selectively enriched in response to alkylating chemotherapy both in vitro and in vivo. Upon transplantation of MGMT (P140K)-expressing male CD34(+ve) donor stem cells isolated from regenerating skeletal muscle into injured female muscle treated with alkylating chemotherapy, donor cells showed enhanced engraftment in the recipient muscle 7 days following transplantation as examined by quantitative-polymerase chain reaction using Y-chromosome specific primers. Fluorescent in situ hybridization analysis using a Y-chromosome paint probe revealed donor-derived de novo muscle fiber formation in the recipient muscle 14 days following transplantation, with approximately 12.5% of total nuclei within the regenerated recipient muscle being of donor origin. Following engraftment, the chemo-protected donor CD34(+ve) cells induced substantial endogenous regeneration of the chemo-ablated host muscle that is otherwise unable to self-regenerate. We conclude that the MGMT (P140K)-mediated enrichment strategy can be successfully implemented in muscle.


Subject(s)
Drug Resistance , Muscle, Skeletal/enzymology , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Stem Cell Transplantation , Animals , Animals, Genetically Modified , Antigens, CD34/metabolism , Carmustine/pharmacology , Cell Differentiation/drug effects , Cell Separation , Cell Survival/drug effects , Guanine/analogs & derivatives , Guanine/pharmacology , Humans , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/enzymology , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/enzymology , Regeneration/drug effects , Retroviridae/genetics , Transduction, Genetic
14.
Endocrinology ; 149(5): 2403-10, 2008 May.
Article in English | MEDLINE | ID: mdl-18258678

ABSTRACT

Stanniocalcin (STC), a secreted glycoprotein, was first studied in fish as a classical hormone with a role in regulating serum calcium levels. There are two closely related proteins in mammals, STC1 and STC2, with functions that are currently unclear. Both proteins are expressed in numerous mammalian tissues rather than being secreted from a specific endocrine gland. No phenotype has been detected yet in Stc1-null mice, and to investigate whether Stc2 could have compensated for the loss of Stc1, we have now generated Stc2(-/-) and Stc1(-/-) Stc2(-/-) mice. Although Stc1 is expressed in the ovary and lactating mouse mammary glands, like the Stc1(-/-) mice, the Stc1(-/-) Stc2(-/-) mice had no detected decrease in fertility, fecundity, or weight gain up until weaning. Serum calcium and phosphate levels were normal in Stc1(-/-) Stc2(-/-) mice, indicating it is unlikely that the mammalian stanniocalcins have a major physiological role in mineral homeostasis. Mice with Stc2 deleted were 10-15% larger and grew at a faster rate than wild-type mice from 4 wk onward, and the Stc1(-/-) Stc2(-/-) mice had a similar growth phenotype. This effect was not mediated through the GH/IGF-I axis. The results are consistent with STC2 being a negative regulator of postnatal growth.


Subject(s)
Glycoproteins/physiology , Growth and Development/genetics , Animals , Animals, Newborn , Body Weight/genetics , Bone Development/genetics , Crosses, Genetic , Female , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Motor Activity/genetics , Muscle, Skeletal/physiology , Organ Size/genetics , Reproduction/genetics , Sex Characteristics
15.
J Biol Chem ; 283(1): 275-283, 2008 Jan 04.
Article in English | MEDLINE | ID: mdl-17951248

ABSTRACT

The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.


Subject(s)
Cytoskeleton/metabolism , Sarcomeres/metabolism , Actins/metabolism , Animals , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Myocardium/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tropomyosin/genetics , Tropomyosin/metabolism
16.
Nat Genet ; 39(10): 1261-5, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17828264

ABSTRACT

More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.


Subject(s)
Actinin/genetics , Muscle, Skeletal/metabolism , Actinin/physiology , Alleles , Animals , Asian People , Genetic Variation , Humans , Immunohistochemistry , Mice , Mice, Knockout , Models, Animal , Models, Genetic , Physical Endurance/genetics , Polymorphism, Genetic , Selection, Genetic , White People
17.
Gene Expr Patterns ; 7(4): 396-404, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17239664

ABSTRACT

The gene GTF2IRD1 is localized within the critical region on chromosome 7 that is deleted in Williams syndrome patients. Genotype-phenotype comparisons of patients carrying variable deletions within this region have implicated GTF2IRD1 and a closely related homolog, GTF2I, as prime candidates for the causation of the principal symptoms of Williams syndrome. We have generated mice with an nls-LacZ knockin mutation of the Gtf2ird1 allele to study its functional role and examine its expression profile. In adults, expression is most prominent in neurons of the central and peripheral nervous system, the retina of the eye, the olfactory epithelium, the spiral ganglion of the cochlea, brown fat adipocytes and to a lesser degree myocytes of the heart and smooth muscle. During development, a dynamic pattern of expression is found predominantly in musculoskeletal tissues, the pituitary, craniofacial tissues, the eyes and tooth buds. Expression of Gtf2ird1 in these tissues correlates with the manifestation of some of the clinical features of Williams syndrome.


Subject(s)
Muscle Proteins/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Williams Syndrome/genetics , Animals , Animals, Newborn , Brain/embryology , Brain/metabolism , Fetus/metabolism , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Muscles/embryology , Muscles/metabolism , Nerve Tissue/embryology , Nerve Tissue/metabolism , Organ Specificity , Organogenesis/genetics , Phenotype , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...