Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1302647, 2023.
Article in English | MEDLINE | ID: mdl-38021246

ABSTRACT

Fundamental to human movement is the ability to interact with objects in our environment. How one reaches an object depends on the object's shape and intended interaction afforded by the object, e.g., grasp and transport. Extensive research has revealed that the motor intention of reach-to-grasp can be decoded from cortical activities using EEG signals. The goal of the present study is to determine the extent to which information encoded in the EEG signals is shared between two limbs to enable cross-hand decoding. We performed an experiment in which human subjects (n = 10) were tasked to interact with a novel object with multiple affordances using either right or left hands. The object had two vertical handles attached to a horizontal base. A visual cue instructs what action (lift or touch) and whether the left or right handle should be used for each trial. EEG was recorded and processed from bilateral frontal-central-parietal regions (30 channels). We trained LDA classifiers using data from trials performed by one limb and tested the classification accuracy using data from trials performed by the contralateral limb. We found that the type of hand-object interaction can be decoded with approximately 59 and 69% peak accuracy in the planning and execution stages, respectively. Interestingly, the decoding accuracy of the reaching directions was dependent on how EEG channels in the testing dataset were spatially mirrored, and whether directions were labeled in the extrinsic (object-centered) or intrinsic (body-centered) coordinates.

2.
J Neurophysiol ; 129(2): 380-391, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36629326

ABSTRACT

The human sensorimotor system can adapt to various changes in the environmental dynamics by updating motor commands to improve performance after repeated exposure to the same task. However, the characteristics and mechanisms of the adaptation process remain unknown for dexterous manipulation, a unique motor task in which the body physically interacts with the environment with multiple effectors, i.e., digits, in parallel. We addressed this gap by using robotic manipulanda to investigate the changes in the digit force coordination following mechanical perturbation of an object held by tripod grasps. As the participants gradually adapted to lifting the object under perturbations, we quantified two components of digit force coordination. One is the direction-specific manipulation moment that directly counteracts the perturbation, whereas the other one is the direction-independent internal moment that supports the stability and stiffness of the grasp. We found that trial-to-trial improvement of task performance was associated with increased manipulation moment and a gradual decrease of the internal moment. These two moments were characterized by different rates of adaptation. We also examined how these two force coordination components respond to changes in perturbation directions. Importantly, we found that the manipulation moment was sensitive to the extent of repetitive exposure to the previous context that has an opposite perturbation direction, whereas the internal moment did not. However, the internal moment was sensitive to whether the postchange perturbation direction was previously experienced. Our results reveal, for the first time, that two distinct processes underlie the adaptation of multidigit force coordination for dexterous manipulation.NEW & NOTEWORTHY Changes in digit force coordination in multidigit object manipulation were quantified with a novel experimental design in which human participants adapted to mechanical perturbations applied to the object. Our results show that the adaptation of digit force coordination can be characterized by two distinct components that operate at different timescales. We further show that these two components respond to changes in perturbation direction differently.


Subject(s)
Hand Strength , Psychomotor Performance , Humans , Adaptation, Physiological , Task Performance and Analysis , Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...