Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioorg Chem ; 130: 106235, 2023 01.
Article in English | MEDLINE | ID: mdl-36375354

ABSTRACT

Thiazolidinedione (TZD) based medications have demonstrated to enhance the insulin sensitivity control, hyperglycemia, and lipid metabolism in patients with type 2 diabetes. Hence, in this study, a new series of novel coumarin-4-yl-1,2,3-triazol-4-yl-methyl-thiazolidine-2,4-diones (TZD1-TZD18) were synthesized via copper (I)-catalyzed azide-alkyne cycloaddition "Click Chemistry". The synthesized compounds were evaluated for their glucose uptake assay and in vitro cytotoxicity against HEK-293 (human embryonic kidney) cells which were compared with the standard drug Pioglitazone. Further, molecular docking analysis of these compounds was carried out to explain the in vitro results with PPARγ (PDB ID: 3CS8) and to better understand the bonding interactions with the target protein. The outcomes of in vitro assessment, molecular docking, and pharmacokinetics of the title compounds were revealed to be highly correlated. Interestingly, the compounds TZD4, TZD10, TZD14 and TZD16 were most efficient in lowering the blood glucose level compared with standard drug.


Subject(s)
Coumarins , Diabetes Mellitus, Type 2 , Humans , Coumarins/chemistry , Coumarins/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , HEK293 Cells , Molecular Docking Simulation , Thiazolidines/chemistry , Thiazolidines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
2.
Appl Organomet Chem ; 36(1): e6469, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34898800

ABSTRACT

Since 2019, the infection of SARS-CoV-2 has been spreading worldwide and caused potentially lethal health problems. In view of this, the present study explores the most commodious and environmentally benign synthetic protocol for the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d]pyrimidinones as SARS-CoV-2 inhibitors via three-component cycloaddition of aromatic aldehyde, malononitrile, and dimedone/barbituric acid in water. Lemon peel from juice factory waste, namely, lemon (Citrus limon), sweet lemon (C. limetta), and Kaffir lime or Citron (C. hystrix), effectually utilized to obtain WELPSA, WESLPSA, and WEKLPSA, respectively, for the synthesis of title compounds. The catalyst was characterized by scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX). The concentration of sodium, potassium, calcium, and magnesium in the catalyst (WELPSA) was determined using atomic absorption spectrometry (AAS). The current approach manifests numerous notable advantages that include ease of preparation, handling and benignity of the catalyst, low cost, green reaction conditions, facile workup, excellent yields (93%-97%) with extreme purity, and recyclability of the catalyst. Compounds were docked on the crystal structure of SARS-CoV-2 (PDB: 6M3M). The consensus score obtained in the range 2.47-4.63 suggests that docking study was optimistic indicating the summary of all forces of interaction between ligands and the protein.

3.
Bioorg Med Chem Lett ; 43: 128112, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33991632

ABSTRACT

A modest, competent and green synthetic procedure for novel coumarinyl-1,3,4-oxadiazolyl-2-mercaptobenzoxazoles 8i-t has been reported. Analysis of the docked (PDB ID: 5IKR; A-Chain) poses of the compounds illustrated that they adopt identical conformations to the extremely selective COX-2 inhibitor. The biological outcomes as well as computational study suggested that the compounds originated to have elevated resemblance towards COX-2 enzyme than COX-1. The compounds 8i, 8l, 8q, 8r, 8s and 8t emerged as most potent and selective COX-2 inhibitors in contrast with Mefenamic acid. The selectivity index of 8l, 8n and 8r was respectively found to be 33.95, 20.25 and 24.98 which manifested their high selectivity against COX-2. Interestingly, the compounds which were active as COX-2 inhibitors were also active as antioxidant agents.


Subject(s)
Antioxidants/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Green Chemistry Technology , Oxadiazoles/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Humans , Microwaves , Models, Molecular , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Picrates/antagonists & inhibitors
4.
Bioorg Med Chem Lett ; 41: 127984, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766768

ABSTRACT

Quinolin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones 8j-v were synthesized by click chemistry as an ultimate tactic where [3 + 2] cycloaddition of azides with terminal alkynes has been evolved. Herein, we are inclined to divulge the implication and prevalence of CuSO4·5H2O and THF/water promoted [3 + 2] cycloaddition reactions. The foremost supremacy of this method are transitory reaction times, facile workup, excellent yields (88-92%) with exorbitant purity and regioselective single product formation both under conventional and microwave method. Docking studies illustrated strong binding interactions with enzyme InhA-D148G (PDB ID: 4DQU) by means of high C-score values. The anti-tubercular and antifungal screening of synthesized compounds proclaimed promising activity. The in vitro and in silico studies imply that these triazoles appended quinolines may acquire the ideal structural prerequisites for auxiliary expansion of novel therapeutic agents.


Subject(s)
Antifungal Agents/pharmacology , Antitubercular Agents/pharmacology , Copper/chemistry , Microwaves , Quinolines/pharmacology , Triazoles/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Aspergillus/drug effects , Candida albicans/drug effects , Catalysis , Cell Survival/drug effects , Cycloaddition Reaction , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Quinolines/chemistry , Stereoisomerism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...