Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Heart Rhythm ; 8(11): 1758-65, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21699849

ABSTRACT

BACKGROUND: Time- and frequency-domain estimates of activation rate have been proposed to guide atrial fibrillation (AF) ablation in patients, but their electrophysiological correlates are unclear. OBJECTIVE: This study sought to examine the relative correlation of average electrical cycle length (CL) and dominant frequency (DF) during AF with reference optical mapping measures. METHODS: Eight sheep hearts were Langendorff-perfused and superfused with oxygenated Tyrode solution inside a tank representing the human thorax. Optical mapping (DI-4-ANEPPS) of 4 × 4 cm2 in the left atrium was performed at 0.5 mm/pixel and 600 fps. A 20-pole catheter was placed in the optical field of view to acquire 1.2-kHz unipolar recordings by the EnSite NavX System (ENS; St. Jude Medical, St. Paul, MN) optimized for CL and DF calculation. During AF, 5-second-long simultaneous optical and electrical signals were analyzed for CL and DF. RESULTS: During pacing, DF measurements had fewer false results than CL (6.6% to 2.5% vs. 21.5% to 4.4% depending on filtering, P <.001). During AF in regions showing periodic waves on both sides of the catheter optical 1,000/CL versus DF correlation showed 95% confidence identity and was better than unipolar measurements in the ENS (adjusted R(2): 0.58879 vs. 0.12902; P < 10(-6)). DFs of unipolar signals correlated better than CLs with DFs of optical signals. Similarly, bipolar DF correlation with optical DF was not different from identity (P >.157), but the bipolar CL showed smaller identity with the optical CL (P <.0004). CONCLUSION: DF values of unipolar and bipolar signals correlate with those of optical signals better than CL values for the respective signals.


Subject(s)
Atrial Fibrillation/physiopathology , Body Surface Potential Mapping/instrumentation , Electrophysiologic Techniques, Cardiac/instrumentation , Animals , Atrial Fibrillation/diagnosis , Disease Models, Animal , Equipment Design , Follow-Up Studies , Sheep , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL