Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817417

ABSTRACT

The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.


Subject(s)
Bees/physiology , Nanotechnology , Pesticides , Pollination/drug effects , Animals , Humans , Pesticides/adverse effects , Pesticides/chemistry , Pesticides/pharmacology , Pollen
2.
Sci Total Environ ; 538: 683-91, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26327636

ABSTRACT

Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment.


Subject(s)
Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Daphnia/drug effects , Environmental Monitoring , Hydrogen-Ion Concentration , Insecticides/analysis , Nitriles/analysis , Osmolar Concentration , Pyrethrins/analysis , Water Pollutants, Chemical/analysis
3.
PLoS One ; 4(7): e6469, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19649249

ABSTRACT

BACKGROUND: Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion. METHODOLOGY/PRINCIPAL FINDINGS: Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5'-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed. CONCLUSIONS/SIGNIFICANCE: Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment.


Subject(s)
Circadian Rhythm/drug effects , Drosophila/physiology , Pesticides/pharmacology , Animals , Drosophila/enzymology , Light , Male
4.
Environ Mol Mutagen ; 45(2-3): 106-14, 2005.
Article in English | MEDLINE | ID: mdl-15688365

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of widespread environmental carcinogens. Most of our knowledge of their mechanisms of metabolic activation to DNA-binding "ultimate carcinogenic" metabolites has come from analysis of the DNA interaction products formed by these highly reactive intermediates. Studies of their role in forming DNA-binding intermediates identical to those formed in vivo from the PAH itself have also allowed identification of the particular cytochrome P450 enzymes involved in activating various structural classes of carcinogenic PAHs. It has been established that PAHs, after metabolic activation in vivo, are capable of inducing mutations in oncogenes and, by inducing multiple mutations, may result in tumors. PAHs also cause changes in cellular gap-junction communication similar to those caused by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Thus, PAHs may also act through a promotional mechanism in addition to serving as tumor initiators. Previous studies on these mechanisms are described and summarized.


Subject(s)
Carcinogens, Environmental/metabolism , DNA Adducts/metabolism , DNA/metabolism , Models, Biological , Polycyclic Aromatic Hydrocarbons/metabolism , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/metabolism , Carcinogens, Environmental/chemistry , Connexins/metabolism , Cytochrome P-450 Enzyme System/metabolism , DNA/genetics , Mutation/genetics , Polycyclic Aromatic Hydrocarbons/chemistry
5.
Bioorg Med Chem Lett ; 15(5): 1283-7, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15713371

ABSTRACT

In this study, we investigated the effects of histone deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) on the metabolism of polycyclic aromatic hydrocarbons (PAH) in human mammary carcinoma derived MCF-7 cells in culture. Benzo[a]pyrene (B[a]P) induces cytochrome P450 (CYP) 1A1, CYP1B1 and other xenobiotic metabolizing enzymes. Results from our study indicated a significant increase in CYP activity in comparison to vehicle control in cells treated with SAHA or TSA as measured by ethoxyresorufin-O-deethylase assay. However, co-treatment with 1.0 microM SAHA and BP, reduced the mRNA levels of CYP1B1 relative to B[a]P alone. When co-treated with 1.0 microM TSA and BP, a reduction in the mRNA levels of both CYP1A1 and CYP1B1 was observed relative to BP alone. We further investigated to ascertain if the differential expression and activity of CYP1A1 and CYP1B1 influenced levels of B[a]P DNA adduct formation. MCF-7 cells co-treated with B[a]P and SAHA or TSA formed DNA adducts, although no significant differences in levels of DNA binding were revealed. These results suggest that while CYP enzyme activity and gene expression were affected by the HDAC inhibitors SAHA and TSA, they had no apparent influence on B[a]P DNA binding.


Subject(s)
Benzo(a)pyrene/metabolism , Cytochrome P-450 Enzyme System/metabolism , DNA Adducts/metabolism , Hydroxamic Acids/pharmacology , Antineoplastic Agents/pharmacology , Benzo(a)pyrene/pharmacology , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , DNA Adducts/drug effects , Dimethyl Sulfoxide/pharmacology , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Humans , RNA, Messenger/drug effects , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL
...