Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38709652

ABSTRACT

Testing for vitamin D deficiency remains a high-volume clinical assay, much of which is done using mass spectrometry-based methods to alleviate challenges in selectivity associated with immunoassays. Ion mobility-mass spectrometry (IM-MS) has been proposed as a rapid alternative to traditional LC-MS/MS methods, but understanding the structural ensemble that contributes to the ion mobility behavior of this molecular class is critical. Herein we demonstrate the first application of high-resolution Structures for Lossless Ion Manipulations (SLIM) IM separations of several groups of isomeric vitamin D metabolites. Despite previous IM studies of these molecules, the high resolving power of SLIM (Rp ∼ 200) has revealed additional conformations for several of the compounds. The highly similar collision cross sections (CCS), some differing by as little as 0.7%, precluded adequate characterization with low-resolution IM techniques where, in some cases, wider than expected peak widths and/or subtle shoulders may have hinted at their presence. Importantly, these newly resolved peaks often provided a unique mobility that could be used to separate isomers and provides potential for their use in quantification. Lastly, the contribution of isotopic labeling to arrival time distribution for commonly used 13C- and deuterium-labeled internal standards was explored. Minor shifts of ∼0.2-0.3% were observed, and in some instances these shifts were specific to the conformer being measured (i.e., "closed" vs "open"). Accounting for these shifts is important during raw data extraction to ensure reproducible peak area integration, which will be a critical consideration in future quantitative applications.

2.
J Am Soc Mass Spectrom ; 34(8): 1708-1714, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37390334

ABSTRACT

Anabolic steroids are of high biological interest due to their involvement in human development and disease progression. Additionally, they are banned in sport due to their performance-enhancing characteristics. Analytical challenges associated with their measurement stem from structural heterogeneity, poor ionization efficiency, and low natural abundance. Their importance in a variety of clinically relevant assays has prompted the consideration of integrating ion mobility spectrometry (IMS) into existing LC-MS assays, due primarily to its speed and structure-based separation capability. Herein we have optimized a rapid (2 min) targeted LC-IM-MS method for the detection and quantification of 40 anabolic steroids and their metabolites. First, a steroid-specific calibrant mixture was developed to cover the full range of retention time, mobility, and accurate mass. Importantly, this use of this calibrant mixture provided robust and reproducible measurements based on collision cross section (CCS) with interday reproducibility of <0.5%. Furthermore, the combined separation power of LC coupled to IM provided comprehensive differentiation of isomers/isobars within 6 different isobaric groups. Multiplexed IM acquisition also provided improved limits of detection, which were well below 1 ng/mL in almost all compounds measured. This method was also capable of steroid profiling, providing quantitative ratios (e.g., testosterone/epitestosterone, androsterone/etiocholanolone, etc.). Lastly, phase II steroid metabolites were probed in lieu of hydrolysis to demonstrate the ability to separate those analytes and provide information beyond total steroid concentration. This method has tremendous potential for rapid analysis of steroid profiles in human urine spanning a variety of applications from developmental disorders to doping in sport.


Subject(s)
Anabolic Androgenic Steroids , Testosterone Congeners , Humans , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Mass Spectrometry/methods , Steroids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...