Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
J Econ Entomol ; 117(4): 1324-1335, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38877967

ABSTRACT

Highbush blueberry pollination depends on managed honey bees (Apis mellifera) L. for adequate fruit sets; however, beekeepers have raised concerns about the poor health of colonies after pollinating this crop. Postulated causes include agrochemical exposure, nutritional deficits, and interactions with parasites and pathogens, particularly Melisococcus plutonius [(ex. White) Bailey and Collins, Lactobacillales: Enterococcaceae], the causal agent of European foulbrood disease, but other pathogens could be involved. To broadly investigate common honey bee pathogens in relation to blueberry pollination, we sampled adult honey bees from colonies at time points corresponding to before (t1), during (t2), at the end (t3), and after (t4) highbush blueberry pollination in British Columbia, Canada, across 2 years (2020 and 2021). Nine viruses, as well as M. plutonius, Vairimorpha ceranae, and V. apis [Tokarev et al., Microsporidia: Nosematidae; formerly Nosema ceranae (Fries et al.) and N. apis (Zander)], were detected by PCR and compared among colonies located near and far from blueberry fields. We found a significant interactive effect of time and blueberry proximity on the multivariate pathogen community, mainly due to differences at t4 (corresponding to ~6 wk after the beginning of the pollination period). Post hoc comparisons of pathogens in near and far groups at t4 showed that detections of sacbrood virus (SBV), which was significantly higher in the near group, not M. plutonius, was the primary driver. Further research is needed to determine if the association of SBV with highbush blueberry pollination is contributing to the health decline that beekeepers observe after pollinating this crop.


Subject(s)
Blueberry Plants , Pollination , Animals , Bees/virology , Bees/parasitology , Blueberry Plants/virology , British Columbia , RNA Viruses/physiology
2.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38636513

ABSTRACT

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Subject(s)
Crops, Agricultural , Pollination , Bees/physiology , Bees/parasitology , Animals , Varroidae/physiology , Canada , Stress, Physiological , Beekeeping/methods
3.
PLoS One ; 19(3): e0288953, 2024.
Article in English | MEDLINE | ID: mdl-38489327

ABSTRACT

In this study, we intensively measured the longitudinal productivity and survival of 362 commercially managed honey bee colonies in Canada, over a two-year period. A full factorial experimental design was used, whereby two treatments were repeated across apiaries situated in three distinct geographic regions: Northern Alberta, Southern Alberta and Prince Edward Island, each having unique bee management strategies. In the protein supplemented treatment, colonies were continuously provided a commercial protein supplement containing 25% w/w pollen, in addition to any feed normally provided by beekeepers in that region. In the fumagillin treatment, colonies were treated with the label dose of Fumagilin-B® each year during the fall. Neither treatment provided consistent benefits across all sites and dates. Fumagillin was associated with a large increase in honey production only at the Northern Alberta site, while protein supplementation produced an early season increase in brood production only at the Southern Alberta site. The protein supplement provided no long-lasting benefit at any site and was also associated with an increased risk of death and decreased colony size later in the study. Differences in colony survival and productivity among regions, and among colonies within beekeeping operations, were far larger than the effects of either treatment, suggesting that returns from extra feed supplements and fumagillin were highly contextually dependent. We conclude that use of fumagillin is safe and sometimes beneficial, but that beekeepers should only consider excess protein supplementation when natural forage is limiting.


Subject(s)
Cyclohexanes , Fatty Acids, Unsaturated , Honey , Bees , Animals , Seasons , Dietary Supplements , Alberta , Sesquiterpenes
4.
Plant Methods ; 19(1): 120, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925401

ABSTRACT

BACKGROUND: The mutualistic interaction between entomophilous plants and pollinators is fundamental to the structure of most terrestrial ecosystems. The sensitive nature of this relationship has been disrupted by anthropogenic modifications to natural landscapes, warranting development of new methods for exploring this trophic interaction. Characterizing the composition of pollen collected by pollinators, e.g. Apis mellifera, is a common means of exploring this relationship, but traditional methods of microscopic pollen assessment are laborious and limited in their scope. The development of pollen metabarcoding as a method of rapidly characterizing the abundance and diversity of pollen within mixed samples presents a new frontier for this type of work, but metabarcoding may have limitations, and validation is warranted before any suite of primers can be confidently used in a research program. We set out to evaluate the utility of an integrative approach, using a set of established primers (ITS2 and rbcL) versus melissopalynological analysis for characterizing 27 mixed-pollen samples from agricultural sites across Canada. RESULTS: Both individual markers performed well relative to melissopalynology at the family level with decreases in the strength of correlation and linear model fits at the genus level. Integrating data from both markers together via a multi-locus approach provided the best rank-based correlation between metagenetic and melissopalynological data at both the genus (ρ = 0.659; p < 0.001) and family level (ρ = 0.830; p < 0.001). Species accumulation curves indicated that, after controlling for sampling effort, melissopalynological characterization provides similar or higher species richness estimates than either marker. The higher number of plant species discovered via the metabarcoding approach simply reflects the vastly greater sampling effort in comparison to melissopalynology. CONCLUSIONS: Pollen metabarcoding performed well at characterizing the composition of mixed pollen samples relative to a traditional melissopalynological approach. Limitations to the quantitative application of this method can be addressed by adopting a multi-locus approach that integrates information from multiple markers.

5.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37815893

ABSTRACT

Many Canadian beekeepers replace a subset of their honey bee queens annually. However, introducing a new queen to a honey bee colony is a management practice with a high degree of uncertainty. Despite the consensus that it is most effective to introduce queens to queenless colonies, some commercial beekeepers claim success with introducing queen cells into the honey super of queenright colonies. We tested the success rate of this practice by introducing queen cells to 100 queenright colonies in southern Alberta during a honey flow. The genotypes of the resultant offspring drones were determined using the microsatellite marker A76 to identify their laying queen mothers. Our results show that new queens successfully supersede original queens in 6% of queenright colonies, suggesting that the practice does not result in the new queen taking over leadership in most colonies. Additionally, supersedure by daughter queens is more common (13%) than new queen supersedure when introducing queen cells to queenright colonies during a honey flow. However, there could be a benefit to the practice of requeening queenright colonies with queen cells in honey supers if the colonies that accepted a new queen (whether a daughter of or unrelated to the old queen) were colonies with a failing queen.


Subject(s)
Honey , Bees , Animals , Canada , Microsatellite Repeats , Genotype
6.
Biotechnol Adv ; 69: 108245, 2023 12.
Article in English | MEDLINE | ID: mdl-37652144

ABSTRACT

Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.


Subject(s)
Carbohydrates , Microbiota , Animals , Carbohydrates/chemistry , Carbohydrate Metabolism , Agriculture , Soil/chemistry
7.
J Econ Entomol ; 116(3): 651-661, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37119539

ABSTRACT

Fumagilin-B is used to treat nosema infection in honey bee colonies; however, it is unclear whether treatment consistently reduces Vairimorpha ceranae (Fries et al.) abundance and improves colony strength and survival in the Canadian Prairies. This study assessed spring and fall fumagillin treatments on nosema abundance, colony strength, and mortality in 2 different beekeeping regions within Alberta, using both indoor and outdoor wintering management at each site. We compared 4 fumagillin treatments: Spring-only, Fall-only, Spring-and-Fall, and Control (no treatment). The spring treatment dose was ~68 mg/colony, whereas the fall treatment dose was 120 or 48 mg/colony, depending on the year. We found that the colonies were infected predominately with V. ceranae, with V. apis (Zander) present only in mixed infections in a subset of colonies. Although treatment in either the spring or fall did reduce nosema abundance in the short term, it did not eliminate the infection, making continued monitoring necessary. Colony strength was improved by spring treatment in some locations but not consistently, possibly due to the treatment timing or low dose. The combined spring and fall treatment increased colony survival over winter in one of 2 yr. Wintering method did not interact with treatment to affect nosema abundance in the spring. There does not appear to be a significant residual benefit of fall treatment as it did not reduce spring nosema abundance or increase colony population. Therefore, spring treatment should be applied to reduce spring V. ceranae abundance rather than relying on residual efficacy from previous fall treatments.


Subject(s)
Hymenoptera , Nosema , Bees , Animals , Canada , Grassland
8.
J Econ Entomol ; 116(3): 686-696, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37040616

ABSTRACT

Canadian beekeepers faced widespread levels of high honey bee colony mortality over the winter of 2021/2022, with an average winter loss of 45%. To understand the economic impact of winter colony mortality in Canada and the beekeeping management strategies used to mitigate these losses, we develop a profit model of commercial beekeeping operations in Alberta, Canada. Our model shows that for operations engaging in commercial pollination as well as honey production (compared to honey production alone), per colony profit is higher and operations are better able to withstand fluctuations in exogenous variables such as prices and environmental factors affecting productivity including winter mortality rates. The results also suggest that beekeeping operations that replace winter colony losses with splits instead of package bees accrue higher per colony profit than those importing packages to replace losses. Further, operations that produce their own queens to use in their replacement splits, accrue even higher profit. Our results demonstrate that the profitability of beekeeping operations is dependent on several factors including winter mortality rates, colony replacement strategies, and the diversification of revenue sources. Beekeepers who are not as susceptible to price and risk fluctuations in international markets and imported bee risks accrue more consistently positive profits.


Subject(s)
Honey , Hymenoptera , Bees , Animals , Alberta , Seasons , Beekeeping
9.
J Econ Entomol ; 115(2): 417-429, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35181788

ABSTRACT

Adequate nutrition is required to support productive honey bee colonies, therefore beekeepers supplement colonies with additional protein at targeted time points. We tested the effects of commercially available protein feeds in spring, in advance of colonies being used for hybrid canola pollination. The feed treatments across the three-year study included the following patty types: Global 15% pollen, Global 0% pollen, Bee Pollen-Ate, FeedBee, and Healthy Bees, as well as an unsupplemented control in year two of the study only. The amount of feed consumed varied among colonies, treatments, date, and year. Similarly, there were also differences in feed efficiency (bees reared per gram of feed consumed), likely due to the relative availability of external forage sources to supplement the feed provided. Unsupplemented colonies were able to rear less brood, and subsequently had fewer adult bees than supplemented colonies, in an apiary where pollen was not abundant. Differences in consumption among treatments often failed to translate in to differences in amount of brood reared or subsequent adult population. All the protein feed treatments contained all ten amino acids essential to honey bees, however lysine and arginine were below the optimal proportion required for growth in all patties except the FeedBee patty. The amount of protein and amount and types of sugars and fats in the products also varied among product type and batch. The results of this study demonstrate a benefit to supplementary spring protein feeding to increase honey bee colony populations in advance of a summer pollination market.


Subject(s)
Brassica napus , Hymenoptera , Animals , Bees , Pollen , Pollination , Seasons
10.
PLoS One ; 17(1): e0263273, 2022.
Article in English | MEDLINE | ID: mdl-35100308

ABSTRACT

Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.


Subject(s)
Bees/parasitology , Bees/virology , Behavior, Animal/physiology , Health , Host-Pathogen Interactions , Phenomics , Animals , Canada , Geography , Honey , Linear Models , Parasites , Phenotype , Sample Size , Seasons , Social Behavior , Varroidae
SELECTION OF CITATIONS
SEARCH DETAIL