Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Article in English | MEDLINE | ID: mdl-38396173

ABSTRACT

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Pyrimidines , Pyrroles , Male , Humans , Docetaxel/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/pharmacology , Signal Transduction , Apoptosis , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism
4.
NPJ Breast Cancer ; 9(1): 64, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543694

ABSTRACT

Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.

6.
ACS Chem Biol ; 18(2): 296-303, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36602435

ABSTRACT

Lactic acid transport is a key process maintaining glycolytic flux in tumors. Inhibition of this process will result in glycolytic shutdown, impacting on cell growth and survival and thus has been pursued as a therapeutic approach for cancers. Using a cell-based screen in a MCT4-dependent cell line, we identified and optimized compounds for their ability to inhibit the efflux of intracellular lactic acid with good physical and pharmacokinetic properties. To deconvolute the mechanism of lactic acid efflux inhibition, we have developed three assays to measure cellular target engagement. Specifically, we synthesized a biologically active photoaffinity probe (IC50 < 10 nM), and using this probe, we demonstrated selective engagement of MCT4 of our parent molecule through a combination of confocal microscopy and in-cell chemoproteomics. As an orthogonal assay, the cellular thermal shift assay (CETSA) confirmed binding to MCT4 in the cellular system. Comparisons of lactic acid efflux potencies in cells with differential expression of MCT family members further confirmed that the optimized compounds inhibit the efflux of lactic acid through the inhibition of MCT4. Taken together, these data demonstrate the power of orthogonal chemical biology methods to determine cellular target engagement, particularly for proteins not readily amenable to traditional biophysical methods.


Subject(s)
Biology , Lactic Acid , Lactic Acid/metabolism , Biological Transport , Cell Line, Tumor , Cell Proliferation
7.
J Med Chem ; 66(1): 384-397, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36525250

ABSTRACT

Due to increased reliance on glycolysis, which produces lactate, monocarboxylate transporters (MCTs) are often upregulated in cancer. MCT4 is associated with the export of lactic acid from cancer cells under hypoxia, so inhibition of MCT4 may lead to cytotoxic levels of intracellular lactate. In addition, tumor-derived lactate is known to be immunosuppressive, so MCT4 inhibition may be of interest for immuno-oncology. At the outset, no potent and selective MCT4 inhibitors had been reported, but a screen identified a triazolopyrimidine hit, with no close structural analogues. Minor modifications to the triazolopyrimidine were made, alongside design of a constrained linker and broad SAR exploration of the biaryl tail to improve potency, physical properties, PK, and hERG. The resulting clinical candidate 15 (AZD0095) has excellent potency (1.3 nM), MCT1 selectivity (>1000×), secondary pharmacology, clean mechanism of action, suitable properties for oral administration in the clinic, and good preclinical efficacy in combination with cediranib.


Subject(s)
Antineoplastic Agents , Neoplasms , Symporters , Humans , Lactic Acid , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Hypoxia , Monocarboxylic Acid Transporters
8.
Oncotarget ; 8(41): 69219-69236, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050199

ABSTRACT

Tumors frequently display a glycolytic phenotype with increased flux through glycolysis and concomitant synthesis of lactate. To maintain glycolytic flux and prevent intracellular acidification, tumors efflux lactate via lactate transporters (MCT1-4). Inhibitors of lactate transport have the potential to inhibit glycolysis and tumor growth. We developed a small molecule inhibitor of MCT1 (AZD3965) and assessed its activity across a panel of cell lines. We explored its antitumor activity as monotherapy and in combination with doxorubicin or rituximab. AZD3965 is a potent inhibitor of MCT1 with activity against MCT2 but selectivity over MCT3 and MCT4. In vitro, AZD3965 inhibited the growth of a range of cell lines especially haematological cells. Inhibition of MCT1 by AZD3965 inhibited lactate efflux and resulted in accumulation of glycolytic intermediates. In vivo, AZD3965 caused lactate accumulation in the Raji Burkitt's lymphoma model and significant tumor growth inhibition. Moreover, AZD3965 can be combined with doxorubicin or rituximab, components of the R-CHOP standard-of-care in DLBCL and Burkitt's lymphoma. Finally, combining lactate transport inhibition by AZD3965 with GLS1 inhibition in vitro, enhanced cell growth inhibition and cell death compared to monotherapy treatment. The ability to combine AZD3965 with novel, and standard-of-care inhibitors offers novel combination opportunities in haematological cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...