Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 51(12): 4453-61, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17908949

ABSTRACT

Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 microg x mm(-2) x h(-1)) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer ( approximately 20 microm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by (31)P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections.


Subject(s)
Biofilms/drug effects , Glass/chemistry , Phosphates/pharmacology , Silver/pharmacology , Staphylococcus aureus/drug effects , Biofilms/growth & development , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Microbial Viability/drug effects , Microscopy, Electron, Scanning , Phosphates/chemistry , Silver/chemistry , Staphylococcus aureus/growth & development , Staphylococcus aureus/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...