Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 184(13): 3352-3355, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34171316

ABSTRACT

In celebration of Pride Month, we asked transgender, genderqueer, and nonbinary scientists to tell us about what fascinates them, their ambitions and achievements, and how their gender identities have shaped their experiences in STEM. We owe a special thanks to 500 Queer Scientists (https://500queerscientists.com/), whose network and efforts at increasing LGBTQ+ scientists' visibility made this article possible.


Subject(s)
Engineering , Mathematics , Research Personnel , Science , Sexual and Gender Minorities , Technology , Transgender Persons , Female , Humans , Male
2.
J Mol Biol ; 432(13): 3761-3770, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32422149

ABSTRACT

Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Membrane Glycoproteins/genetics , Neurons/metabolism , Optogenetics , Receptor, trkB/genetics , Animals , Arabidopsis Proteins/chemistry , Cell Death/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cryptochromes/chemistry , Humans , Light , Neoplasms/genetics , Neoplasms/pathology , Neurites/radiation effects , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , PC12 Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/radiation effects , Rats , Signal Transduction/radiation effects
3.
J Mol Biol ; 432(13): 3739-3748, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32335036

ABSTRACT

Receptor tyrosine kinases (RTKs) play crucial roles in human health, and their misregulation is implicated in disorders ranging from neurodegenerative diseases to cancers. The highly conserved mechanism of activation of RTKs makes them especially appealing candidates for control via optogenetic dimerization methods. This work offers a strategy for using the improved light-induced dimer (iLID) system with a constructed tandem dimer of its binding partner nano (tdnano) to build light-activatable versions of RTKs. In the absence of light, the iLID-RTK is cytosolic, monomeric, and inactive. Under blue light, the iLID + tdnano system recruits two copies of iLID-RTK to tdnano, dimerizing, and activating the RTK. We demonstrate that iLID opto-iTrkA and opto-iTrkB are capable of reproducing downstream ERK and Akt signaling only in the presence of tdnano. We further show with our opto-iTrkA that the system is compatible with multi-day and population-level activation of TrkA in PC12 cells. By leveraging genetic targeting of tdnano, we achieve RTK activation at a specific subcellular location even with whole-cell illumination, allowing us to confidently probe the impact of context on signaling outcome.


Subject(s)
Nerve Growth Factors/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Nerve Growth Factor/genetics , Signal Transduction/genetics , Animals , Dimerization , Humans , Light , Optogenetics/trends , Rats , Signal Transduction/radiation effects
4.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Article in English | MEDLINE | ID: mdl-32066662

ABSTRACT

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Subject(s)
Calcium Channels, T-Type , Schizophrenia , Animals , Electroencephalography , Humans , Mice , Schizophrenia/genetics , Sleep , Sleep, REM
5.
ACS Synth Biol ; 7(7): 1685-1693, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29975841

ABSTRACT

Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. As TrkA signaling is highly dynamic, mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.


Subject(s)
Receptor, trkA/metabolism , Animals , Cell Membrane/metabolism , Cell Survival/genetics , Cell Survival/physiology , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , PC12 Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Rats , Receptor, trkA/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...