Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Syst ; 47(1): 23, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781551

ABSTRACT

Information systems such as Electronic Health Record (EHR) systems are susceptible to data quality (DQ) issues. Given the growing importance of EHR data, there is an increasing demand for strategies and tools to help ensure that available data are fit for use. However, developing reliable data quality assessment (DQA) tools necessary for guiding and evaluating improvement efforts has remained a fundamental challenge. This review examines the state of research on operationalising EHR DQA, mainly automated tooling, and highlights necessary considerations for future implementations. We reviewed 1841 articles from PubMed, Web of Science, and Scopus published between 2011 and 2021. 23 DQA programs deployed in real-world settings to assess EHR data quality (n = 14), and a few experimental prototypes (n = 9), were identified. Many of these programs investigate completeness (n = 15) and value conformance (n = 12) quality dimensions and are backed by knowledge items gathered from domain experts (n = 9), literature reviews and existing DQ measurements (n = 3). A few DQA programs also explore the feasibility of using data-driven techniques to assess EHR data quality automatically. Overall, the automation of EHR DQA is gaining traction, but current efforts are fragmented and not backed by relevant theory. Existing programs also vary in scope, type of data supported, and how measurements are sourced. There is a need to standardise programs for assessing EHR data quality, as current evidence suggests their quality may be unknown.


Subject(s)
Data Accuracy , Electronic Health Records , Humans , Software
2.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 3045-8, 2006.
Article in English | MEDLINE | ID: mdl-17946155

ABSTRACT

A major drawback of 3-D medical image registration techniques is the performance bottleneck associated with re-sampling and similarity computation. Such bottlenecks limit registration applications in clinical situations where fast execution times are required and become particularly apparent in the case of registering 3-D data sets. In this paper a novel framework for high performance intensity-based volume registration is presented. Geometric alignment of both reference and sensed volume sets is achieved through a combination of scaling, translation, and rotation. Crucially, resampling and similarity computation is performed intelligently by a set of knowledge sources. The knowledge sources work in parallel and communicate with each other by means of a distributed blackboard architecture. Partitioning of the blackboard is used to balance communication and processing workloads. Large-scale registrations with substantial speedups, when compared with a conventional implementation, have been demonstrated.


Subject(s)
Imaging, Three-Dimensional/statistics & numerical data , Algorithms , Biomedical Engineering , Computer Communication Networks , Computer Systems , Humans , Knowledge Bases
SELECTION OF CITATIONS
SEARCH DETAIL
...