Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 25(2): 229-233, 2019 02.
Article in English | MEDLINE | ID: mdl-30664785

ABSTRACT

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity. Subretinal delivery of EDIT-101 in humanized CEP290 mice showed rapid and sustained CEP290 gene editing. A comparable surrogate non-human primate (NHP) vector also achieved productive editing of the NHP CEP290 gene at levels that met the target therapeutic threshold, and demonstrated the ability of CRISPR/Cas9 to edit somatic primate cells in vivo. These results support further development of EDIT-101 for LCA10 and additional CRISPR-based medicines for other inherited retinal disorders.


Subject(s)
Gene Editing , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Animals , Cell Line , Gene Knock-In Techniques , Humans , Mice , Primates , Reproducibility of Results , Vision, Ocular
2.
Arthritis Rheum ; 56(11): 3670-4, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17968948

ABSTRACT

OBJECTIVE: To phenotypically characterize ADAMTS-4- and ADAMTS-5-double-knockout mice, and to determine the effect of deletion of ADAMTS-4 and ADAMTS-5 on the progression of osteoarthritis (OA) in mice. METHODS: Mice lacking the catalytic domain of ADAMTS-4 and ADAMTS-5 were crossed to generate ADAMTS-4/5-double-knockout animals. Twelve-week-old and 1-year-old male and female ADAMTS-4/5-double-knockout mice were compared with age- and sex-matched wild-type (WT) mice by evaluating terminal body weights, organ weights, clinical pathology parameters, PIXImus mouse densitometry findings, and macroscopic and microscopic observations. ADAMTS-4/5-double-knockout mice were challenged by surgical induction of joint instability to determine the importance of these genes in the progression of OA. Articular and nonarticular cartilage explants from WT and ADAMTS-4/5-double-knockout mice were treated with interleukin-1 (IL-1) plus retinoic acid ex vivo, to examine proteoglycan degradation. RESULTS: There were no genotype-related phenotype differences between ADAMTS-4/5-double-knockout and WT mice through 1 year of age, with the exception that female ADAMTS-4/5-double-knockout mice had a lower mean terminal body weight at the 12-week time point. Eight weeks after surgical induction of joint instability, OA was significantly less severe in ADAMTS-4/5-double-knockout mice compared with WT mice. Following stimulation of cartilage explants with IL-1 plus retinoic acid, aggrecanase-mediated degradation in ADAMTS-4/5-double-knockout mice was ablated, to a level comparable with that in ADAMTS-5-knockout mice. CONCLUSION: Dual deletion of ADAMTS-4 and ADAMTS-5 generated mice that were phenotypically indistinguishable from WT mice. Deletion of ADAMTS-4/5 provided significant protection against proteoglycan degradation ex vivo and decreased the severity of murine OA. These effects in the ADAMTS-4/5-double-knockout mice were comparable with those observed with deletion of ADAMTS-5 alone.


Subject(s)
ADAM Proteins/genetics , Osteoarthritis, Hip/physiopathology , Osteoarthritis, Knee/physiopathology , Procollagen N-Endopeptidase/genetics , ADAM Proteins/metabolism , ADAMTS4 Protein , ADAMTS5 Protein , Aggrecans/metabolism , Animals , Disease Models, Animal , Disease Progression , Female , Genotype , Hip Joint/enzymology , Hip Joint/pathology , Joint Instability/pathology , Joint Instability/physiopathology , Knee Joint/enzymology , Knee Joint/pathology , Male , Mice , Mice, Knockout , Osteoarthritis, Hip/pathology , Osteoarthritis, Knee/pathology , Phenotype , Procollagen N-Endopeptidase/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...