Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 493, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627399

ABSTRACT

Faecal or biopsy samples are frequently used to analyse the gut microbiota, but issues remain with the provision and collection of such samples. Rectal swabs are widely-utilised in clinical practice and previous data demonstrate their potential role in microbiota analyses; however, studies to date have been heterogenous, and there are a particular lack of data concerning the utility of swabs for the analysis of the microbiota's functionality and metabolome. We compared paired stool and rectal swab samples from healthy individuals to investigate whether rectal swabs are a reliable proxy for faecal sampling. There were no significant differences in key alpha and beta diversity measures between swab and faecal samples, and inter-subject variability was preserved. Additionally, no significant differences were demonstrated in abundance of major annotated phyla. Inferred gut functionality using Tax4Fun2 showed excellent correlation between the two sampling techniques (Pearson's coefficient r = 0.9217, P < 0.0001). Proton nuclear magnetic resonance (1H NMR) spectroscopy enabled the detection of 20 metabolites, with overall excellent correlation identified between rectal swab and faecal samples for levels all metabolites collectively, although more variable degrees of association between swab and stool for levels of individual metabolites. These data support the utility of rectal swabs in both compositional and functional analyses of the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Feces , Specimen Handling/methods , RNA, Ribosomal, 16S
2.
J Appl Physiol (1985) ; 130(4): 1093-1105, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33411640

ABSTRACT

Type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia and progressive insulin resistance, leading to macro and microvascular dysfunction. Passive heating has potential to improve glucose homeostasis and act as an exercise mimetic. We assessed the effect of acute passive heating before or during an oral glucose tolerance test (OGTT) in people with T2DM. Twelve people with T2DM were randomly assigned to the following three conditions: 1) 3-h OGTT (control), 2) 1-h passive heating (40°C water) 30 min before an OGTT (HOT-OGTT), and 3) 1-h passive heating (40°C water) 30 min after commencing an OGTT (OGTT-HOT). Blood glucose concentration, insulin sensitivity, extracellular heat shock protein 70 (eHSP70), total energy expenditure (TEE), heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were recorded. Passive heating did not alter blood glucose concentration [control: 1,677 (386) arbitrary units (AU), HOT-OGTT: 1,797 (340) AU, and OGTT-HOT: 1,662 (364) AU, P = 0.28], insulin sensitivity (P = 0.15), or SBP (P = 0.18) but did increase eHSP70 concentration in both heating conditions [control: 203.48 (110.81) pg·mL-1; HOT-OGTT: 402.47 (79.02) pg·mL-1; and OGTT-HOT: 310.00 (60.53) pg·mL-1, P < 0.001], increased TEE (via fat oxidation) in the OGTT-HOT condition [control: 263 (33) kcal, HOT-OGTT: 278 (40) kcal, and OGTT-HOT: 304 (38) kcal, P = 0.001], increased HR in both heating conditions (P < 0.001), and reduced DBP in the OGTT-HOT condition (P < 0.01). Passive heating in close proximity to a glucose challenge does not alter glucose tolerance but does increase eHSP70 concentration and TEE and reduce blood pressure in people with T2DM.NEW & NOTEWORTHY This is the first study to investigate the timing of acute passive heating on glucose tolerance and extracellular heat shock protein 70 concentration ([eHSP70]) in people with type 2 diabetes. The principal novel findings from this study were that both passive heating conditions: 1) did not reduce the area under the curve or peak blood glucose concentration, 2) elevated heart rate, and 3) increased [eHSP70], which was blunted by glucose ingestion, while passive heating following glucose ingestion, 4) increased total energy expenditure, and 5) reduced diastolic blood pressure.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Blood Glucose , Blood Pressure , Glucose , Heating , Humans , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL
...