Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(1): 983-995, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38146996

ABSTRACT

Catalytic condensers composed of ion gels separating a metal electrode from a platinum-on-carbon active layer were fabricated and characterized to achieve more powerful, high surface area dynamic heterogeneous catalyst surfaces. Ion gels comprised of poly(vinylidene difluoride)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide were spin coated as a 3.8 µm film on a Au surface, after which carbon sputtering of a 1.8 nm carbon film and electron-beam evaporation of 2 nm Pt clusters created an active surface exposed to reactant gases. Electronic characterization indicated that most charge condensed within the Pt nanoclusters upon application of a potential bias, with the condenser device achieving a capacitance of ∼20 µF/cm2 at applied frequencies of up to 120 Hz. The maximum charge of ∼1014 |e-| cm-2 was condensed under stable device conditions at 200 °C on catalytic films with ∼1015 sites cm-2. Grazing incidence infrared spectroscopy measured carbon monoxide adsorption isobars, indicating a change in the CO* binding energy of ∼19 kJ mol-1 over an applied potential bias of only 1.25 V. Condensers were also fabricated on flexible, large area Kapton substrates allowing stacked or tubular form factors that facilitate high volumetric active site densities, ultimately enabling a fast and powerful catalytic condenser that can be fabricated for programmable catalysis applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...