Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 10(1): 44, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272699

ABSTRACT

BACKGROUND: The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS: Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS: Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS: Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.


Subject(s)
Chytridiomycota , Microbiota , Mycoses , Animals , Anura/genetics , Anura/microbiology , Chytridiomycota/genetics , Microbiota/genetics , Mycoses/microbiology , Mycoses/veterinary , RNA, Ribosomal, 16S/genetics
2.
Mol Ecol ; 30(22): 5831-5843, 2021 11.
Article in English | MEDLINE | ID: mdl-34494339

ABSTRACT

Social environments influence multiple traits of individuals including immunity, stress and ageing, often in sex-specific ways. The composition of the microbiome (the assemblage of symbiotic microorganisms within a host) is determined by environmental factors and the host's immune, endocrine and neural systems. The social environment could alter host microbiomes extrinsically by affecting transmission between individuals, probably promoting homogeneity in the microbiome of social partners. Alternatively, intrinsic effects arising from interactions between the microbiome and host physiology (the microbiota-gut-brain axis) could translate social stress into dysbiotic microbiomes, with consequences for host health. We investigated how manipulating social environments during larval and adult life-stages altered the microbiome composition of Drosophila melanogaster fruit flies. We used social contexts that particularly alter the development and lifespan of males, predicting that any intrinsic social effects on the microbiome would therefore be sex-specific. The presence of adult males during the larval stage significantly altered the microbiome of pupae of both sexes. In adults, same-sex grouping increased bacterial diversity in both sexes. Importantly, the microbiome community structure of males was more sensitive to social contact at older ages, an effect partially mitigated by housing focal males with young rather than coaged groups. Functional analyses suggest that these microbiome changes impact ageing and immune responses. This is consistent with the hypothesis that the substantial effects of the social environment on individual health are mediated through intrinsic effects on the microbiome, and provides a model for understanding the mechanistic basis of the microbiota-gut-brain axis.


Subject(s)
Drosophila melanogaster , Microbiota , Age Factors , Animals , Brain-Gut Axis , Drosophila melanogaster/genetics , Female , Male , Microbiota/genetics , Social Environment
3.
Front Microbiol ; 10: 1834, 2019.
Article in English | MEDLINE | ID: mdl-31507541

ABSTRACT

The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes.

4.
Sci Rep ; 8(1): 13942, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224824

ABSTRACT

Sporadic cases of herpesvirus-associated disease have been reported in the Western European hedgehog (Erinaceus europaeus), but there has been little surveillance for, nor any sequence characterisation of, herpesviruses in this species to date. A nested pan-herpesvirus polymerase chain reaction (PCR) targeting a region of the DNA polymerase gene was used to test 129 Western European hedgehogs from across Great Britain, 2011-2016; 59 (46%) of which were PCR-positive. In addition, samples from two previously published cases of fatal herpesvirus infection in E. europaeus, from Sweden and Switzerland, were positive using this PCR. No statistically significant relationship was detected between PCR result and sex, age class, year or season for the British hedgehogs tested. In most PCR-positive animals (19/22) from which liver and brain were tested separately, both were PCR-positive. Sanger sequencing of amplicons from 59 British hedgehogs revealed at least two novel viruses within the Gammaherpesvirinae. Thirteen of these hedgehogs had liver and brain tissues screened for microscopic abnormalities, of which one had non-suppurative meningoencephalitis, but neither intranuclear inclusion bodies nor herpesvirus virions (on electron microscopical examination) were identified. Sequencing of the whole DNA polymerase gene confirmed two genetically different Human alphaherpesvirus 1 viruses in the Swedish and Swiss hedgehogs.


Subject(s)
Hedgehogs/virology , Herpesviridae Infections/virology , Herpesviridae/genetics , Animals , Brain/virology , DNA-Directed DNA Polymerase/genetics , Female , Humans , Inclusion Bodies/genetics , Male , Polymerase Chain Reaction/methods , Sweden , Switzerland , United Kingdom , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...