Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Public Health Rep ; : 333549241253787, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868902

ABSTRACT

OBJECTIVES: To build on the success of wastewater surveillance during the COVID-19 pandemic, jurisdictions funded under the Centers for Disease Control and Prevention National Wastewater Surveillance System are looking to expand their wastewater programs to detect more pathogens. However, many public health agencies do not know how to use the collected wastewater data to formulate public health responses, underscoring a need for guidance. To address this knowledge gap, the Houston Health Department (HHD) developed a novel response framework that outlines an internal action plan that is tailored by pathogen type after detection of various pathogens in wastewater. MATERIALS AND METHODS: In July 2023, HHD met with subject matter experts (eg, bureau chiefs, program managers) in internal departments, including epidemiology, immunization, and health education, to discuss the general outline of the response framework and each department's anticipated role after pathogen detection. RESULTS: The internal framework established a flow for notifications and the actions to be taken by departments in HHD, with the goals of (1) ensuring timely and efficient responses to pathogen detections, (2) creating accountability within departments for taking their assigned actions, and (3) making certain that HHD was prepared for intervention implementation when a new pathogen was detected. PRACTICE IMPLICATIONS: As more public health agencies expand their wastewater surveillance programs to target additional pathogens, development of internal action plans tailored to departmental capacity and programs is an important step for public health agencies. The information compiled in this response framework can be a model for other public health agencies to adopt when expanding the scope of their wastewater monitoring systems.

2.
Sci Total Environ ; 931: 172683, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663617

ABSTRACT

Wastewater monitoring is an efficient and effective way to surveil for various pathogens in communities. This is especially beneficial in areas of high transmission, such as preK-12 schools, where infections may otherwise go unreported. In this work, we apply wastewater disease surveillance using school and community wastewater from across Houston, Texas to monitor three major enteric viruses: astrovirus, sapovirus genogroup GI, and group A rotavirus. We present the results of a 10-week study that included the analysis of 164 wastewater samples for astrovirus, rotavirus, and sapovirus in 10 preK-12 schools, 6 wastewater treatment plants, and 2 lift stations using newly designed RT-ddPCR assays. We show that the RT-ddPCR assays were able to detect astrovirus, rotavirus, and sapovirus in school, lift station, and wastewater treatment plant (WWTP) wastewater, and that a positive detection of a virus in a school sample was paired with a positive detection of the same virus at a downstream lift station or wastewater treatment plant over 97 % of the time. Additionally, we show how wastewater detections of rotavirus in schools and WWTPs were significantly associated with citywide viral intestinal infections. School wastewater can play a role in the monitoring of enteric viruses and in the detection of outbreaks, potentially allowing public health officials to quickly implement mitigation strategies to prevent viral spread into surrounding communities.


Subject(s)
Rotavirus , Sapovirus , Schools , Wastewater , Wastewater/virology , Sapovirus/isolation & purification , Rotavirus/isolation & purification , Texas , Environmental Monitoring/methods , Humans , Mamastrovirus/isolation & purification
3.
Sci Rep ; 14(1): 5575, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448481

ABSTRACT

Wastewater surveillance has proven a cost-effective key public health tool to understand a wide range of community health diseases and has been a strong source of information on community levels and spread for health departments throughout the SARS- CoV-2 pandemic. Studies spanning the globe demonstrate the strong association between virus levels observed in wastewater and quality clinical case information of the population served by the sewershed. Few of these studies incorporate the temporal dependence present in sampling over time, which can lead to estimation issues which in turn impact conclusions. We contribute to the literature for this important public health science by putting forward time series methods coupled with statistical process control that (1) capture the evolving trend of a disease in the population; (2) separate the uncertainty in the population disease trend from the uncertainty due to sampling and measurement; and (3) support comparison of sub-sewershed population disease dynamics with those of the population represented by the larger downstream treatment plant. Our statistical methods incorporate the fact that measurements are over time, ensuring correct statistical conclusions. We provide a retrospective example of how sub-sewersheds virus levels compare to the upstream wastewater treatment plant virus levels. An on-line algorithm supports real-time statistical assessment of deviations of virus level in a population represented by a sub-sewershed to the virus level in the corresponding larger downstream wastewater treatment plant. This information supports public health decisions by spotlighting segments of the population where outbreaks may be occurring.


Subject(s)
COVID-19 , Wastewater , Humans , Time Factors , RNA, Viral/genetics , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring
4.
Integr Environ Assess Manag ; 20(2): 533-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37462252

ABSTRACT

Industrial disasters have caused hazardous air pollution and public health impacts. Response officials have developed limited exposure guidelines to direct them during the event; often, guidelines are outdated and may not represent relevant elevated-exposure periods. The 2019 Intercontinental Terminals Company (ITC) fire in Houston, Texas led to large-scale releases of benzene and presented a public health threat. This incident highlights the need for effective response and nimble, rapid public health communication. We developed a data-driven visualization tool to store, display, and interpret ambient benzene concentrations to assist health officials during environmental emergencies. Guidance values to interpret risk from acute exposure to benzene were updated using recent literature that also considers exposure periodicity. The visualization platform can process data from different sampling instruments and air monitors automatically, and displays information publicly in real time, along with the associated risk information and action recommendations. The protocol was validated by applying it retrospectively to the ITC event. The new guidance values are 6-30 times lower than those derived by the Texas regulatory agency. Fixed-site monitoring data, assessed using the protocol and revised thresholds, indicated that eight shelter-in-place and 17 air-quality alerts may have been considered. At least one of these shelter-in-place alerts corresponded to prolonged, elevated benzene concentrations (~1000 ppb). This new tool addresses essential gaps in the timely communication of air pollution measurements, provides context to understand potential health risks from exposure to benzene, and provides a clear protocol for local officials in responding to industrial air releases of benzene. Integr Environ Assess Manag 2024;20:533-546. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Air Pollutants , Disasters , Air Pollutants/analysis , Texas , Benzene/analysis , Environmental Monitoring/methods , Data Visualization , Retrospective Studies
6.
Health Promot Pract ; : 15248399231196857, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37731273

ABSTRACT

Since the start of the COVID-19 pandemic, wastewater surveillance has emerged as a public health tool that supplements traditional surveillance methods used to detect the prevalence of the SARS-CoV-2 virus in communities. In May 2020, the Houston Health Department (HHD) partnered with a coalition of municipal and academic partners to develop a wastewater monitoring and reporting system for the city of Houston, Texas. The HHD subsequently launched a program to conduct targeted wastewater sampling at 52 school sites located in a large, urban school district in Houston. Data generated by this program are shared with school district officials and nurses from participating schools. Although initial feedback from these stakeholders indicated that they considered the wastewater data valuable, the emergency nature of the pandemic prevented a systematic evaluation of the program. To address this gap in knowledge, the HHD and Rice University conducted a study to determine how wastewater data are used to make decisions about COVID-19 prevention and mitigation practices in schools. Our findings indicate that maximizing the utility of wastewater data in the school context will require the development of communication strategies and education efforts tailored to the needs of specific audiences and improving collaboration between local health departments, school districts, and school nurses.

7.
Public Health Rep ; 138(6): 856-861, 2023.
Article in English | MEDLINE | ID: mdl-37503606

ABSTRACT

Since the start of the COVID-19 pandemic, wastewater surveillance has emerged as a powerful tool used by public health authorities to track SARS-CoV-2 infections in communities. In May 2020, the Houston Health Department began working with a coalition of municipal and academic partners to develop a wastewater monitoring and reporting system for the city of Houston, Texas. Data collected from the system are integrated with other COVID-19 surveillance data and communicated through different channels to local authorities and the general public. This information is used to shape policies and inform actions to mitigate and prevent the spread of COVID-19 at municipal, institutional, and individual levels. Based on the success of this monitoring and reporting system to drive public health protection efforts, the wastewater surveillance program is likely to become a standard part of the public health toolkit for responding to infectious diseases and, potentially, other disease-causing outbreaks.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Public Health , Pandemics/prevention & control , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
8.
Environ Health Perspect ; 131(6): 67006, 2023 06.
Article in English | MEDLINE | ID: mdl-37285285

ABSTRACT

BACKGROUND: Exposures to environmental contaminants can be influenced by social determinants of health. As a result, persons living in socially disadvantaged communities may experience disproportionate health risks from environmental exposures. Mixed methods research can be used to understand community-level and individual-level exposures to chemical and nonchemical stressors contributing to environmental health disparities. Furthermore, community-based participatory research (CBPR) approaches can lead to more effective interventions. OBJECTIVES: We applied mixed methods to identify environmental health perceptions and needs among metal recyclers and residents living in disadvantaged neighborhoods near metal recycling facilities in Houston, Texas, in a CBPR study, Metal Air Pollution Partnership Solutions (MAPPS). Informed by what we learned and our previous findings from cancer and noncancer risk assessments of metal air pollution in these neighborhoods, we developed an action plan to lower metal aerosol emissions from metal recycling facilities and enhance community capacity to address environmental health risks. METHODS: Key informant interviews, focus groups, and community surveys were used to identify environmental health concerns of residents. A diverse group from academia, an environmental justice advocacy group, the community, the metal recycling industry, and the local health department collaborated and translated these findings, along with results from our prior risk assessments, to inform a multifaceted public health action plan. RESULTS: An evidence-based approach was used to develop and implement neighborhood-specific action plans. Plans included a voluntary framework of technical and administrative controls to reduce metal emissions in the metal recycling facilities, direct lines of communication among residents, metal recyclers, and local health department officials, and environmental health leadership training. DISCUSSION: Using a CBPR approach, health risk assessment findings based on outdoor air monitoring campaigns and community survey results informed a multipronged environmental health action plan to mitigate health risks associated with metal air pollution. https://doi.org/10.1289/EHP11405.


Subject(s)
Air Pollution , Community-Based Participatory Research , Air Pollution/analysis , Environmental Exposure/analysis , Metals , Environmental Health
9.
Nat Commun ; 14(1): 2834, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198181

ABSTRACT

As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variant of concerns (VoCs) in communities. In this paper we present QuaID, a novel bioinformatics tool for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3-week earlier VoC detection, (ii) accurate VoC detection (>95% precision on simulated benchmarks), and (iii) leverages all mutational signatures (including insertions & deletions).


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Wastewater , Benchmarking
10.
Water Res ; 231: 119648, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36702023

ABSTRACT

Wastewater surveillance is a passive and efficient way to monitor the spread of infectious diseases in large populations and high transmission areas such as preK-12 schools. Infections caused by respiratory viruses in school-aged children are likely underreported, particularly because many children may be asymptomatic or mildly symptomatic. Wastewater monitoring of SARS-CoV-2 has been studied extensively and primarily by sampling at centralized wastewater treatment plants, and there are limited studies on SARS-CoV-2 in preK-12 school wastewater. Similarly, wastewater detections of influenza have only been reported in wastewater treatment plant and university manhole samples. Here, we present the results of a 17-month wastewater monitoring program for SARS-CoV-2 (n = 2176 samples) and influenza A and B (n = 1217 samples) in 51 preK-12 schools. We show that school wastewater concentrations of SARS-CoV-2 RNA were strongly associated with COVID-19 cases in schools and community positivity rates, and that influenza detections in school wastewater were significantly associated with citywide influenza diagnosis rates. Results were communicated back to schools and local communities to enable mitigation strategies to stop the spread, and direct resources such as testing and vaccination clinics. This study demonstrates that school wastewater surveillance is reflective of local infections at several population levels and plays a crucial role in the detection and mitigation of outbreaks.


Subject(s)
COVID-19 , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Wastewater , COVID-19/epidemiology , RNA, Viral , Wastewater-Based Epidemiological Monitoring
11.
Sci Total Environ ; 855: 158967, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36162580

ABSTRACT

Public health surveillance systems for COVID-19 are multifaceted and include multiple indicators reflective of different aspects of the burden and spread of the disease in a community. With the emergence of wastewater disease surveillance as a powerful tool to track infection dynamics of SARS-CoV-2, there is a need to integrate and validate wastewater information with existing disease surveillance systems and demonstrate how it can be used as a routine surveillance tool. A first step toward integration is showing how it relates to other disease surveillance indicators and outcomes, such as case positivity rates, syndromic surveillance data, and hospital bed use rates. Here, we present an 86-week long surveillance study that covers three major COVID-19 surges. City-wide SARS-CoV-2 RNA viral loads in wastewater were measured across 39 wastewater treatment plants and compared to other disease metrics for the city of Houston, TX. We show that wastewater levels are strongly correlated with positivity rate, syndromic surveillance rates of COVID-19 visits, and COVID-19-related general bed use rates at hospitals. We show that the relative timing of wastewater relative to each indicator shifted across the pandemic, likely due to a multitude of factors including testing availability, health-seeking behavior, and changes in viral variants. Next, we show that individual WWTPs led city-wide changes in SARS-CoV-2 viral loads, indicating a distributed monitoring system could be used to enhance the early-warning capability of a wastewater monitoring system. Finally, we describe how the results were used in real-time to inform public health response and resource allocation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , RNA, Viral , Pandemics
13.
medRxiv ; 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35898338

ABSTRACT

As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variants of concern (VoC) in communities. Multiple recent studies support that wastewater-based SARS-CoV-2 detection of circulating VoC can precede clinical cases by up to two weeks. Furthermore, wastewater based epidemiology enables wide population-based screening and study of viral evolutionary dynamics. However, highly sensitive detection of emerging variants remains a complex task due to the pooled nature of environmental samples and genetic material degradation. In this paper we propose quasi-unique mutations for VoC identification, implemented in a novel bioinformatics tool (QuaID) for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3 week earlier VoC detection compared to existing approaches, (ii) enables more sensitive VoC detection, which is shown to be tolerant of >50% mutation drop-out, and (iii) leverages all mutational signatures, including insertions & deletions.

14.
Sci Total Environ ; 833: 155059, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35395314

ABSTRACT

Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Wastewater
16.
Disaster Med Public Health Prep ; 16(3): 885-888, 2022 06.
Article in English | MEDLINE | ID: mdl-33722331

ABSTRACT

OBJECTIVES: The aim of this study was to provide insights learned from disaster research response (DR2) efforts following Hurricane Harvey in 2017 to launch DR2 activities following the Intercontinental Terminals Company (ITC) fire in Deer Park, Texas, in 2019. METHODS: A multidisciplinary group of academic, community, and government partners launched a myriad of DR2 activities. RESULTS: The DR2 response to Hurricane Harvey focused on enhancing environmental health literacy around clean-up efforts, measuring environmental contaminants in soil and water in impacted neighborhoods, and launching studies to evaluate the health impact of the disaster. The lessons learned after Harvey enabled rapid DR2 activities following the ITC fire, including air monitoring and administering surveys and in-depth interviews with affected residents. CONCLUSIONS: Embedding DR2 activities at academic institutions can enable rapid deployment of lessons learned from one disaster to enhance the response to subsequent disasters, even when those disasters are different. Our experience demonstrates the importance of academic institutions working with governmental and community partners to support timely disaster response efforts. Efforts enabled by such experience include providing health and safety training and consistent and reliable messaging, collecting time-sensitive and critical data in the wake of the event, and launching research to understand health impacts and improve resiliency.


Subject(s)
Cyclonic Storms , Deer , Disaster Planning , Disasters , Animals , Humans , Industry
17.
J Expo Sci Environ Epidemiol ; 31(5): 823-831, 2021 09.
Article in English | MEDLINE | ID: mdl-34175888

ABSTRACT

BACKGROUND: Making landfall in Rockport, Texas in August 2017, Hurricane Harvey resulted in unprecedented flooding, displacing tens of thousands of people, and creating environmental hazards and exposures for many more. OBJECTIVE: We describe a collaborative project to establish the Texas Flood Registry to track the health and housing impacts of major flooding events. METHODS: Those who enroll in the registry answer retrospective questions regarding the impact of storms on their health and housing status. We recruit both those who did and did not flood during storm events to enable key comparisons. We leverage partnerships with multiple local health departments, community groups, and media outlets to recruit broadly. We performed a preliminary analysis using multivariable logistic regression and a binomial Bayesian conditional autoregressive (CAR) spatial model. RESULTS: We find that those whose homes flooded, or who came into direct skin contact with flood water, are more likely to experience a series of self-reported health effects. Median household income is inversely related to adverse health effects, and spatial analysis provides important insights within the modeling approach. SIGNIFICANCE: Global climate change is likely to increase the number and intensity of rainfall events, resulting in additional health burdens. Population-level data on the health and housing impacts of major flooding events is imperative in preparing for our planet's future.


Subject(s)
Floods , Public Health , Bayes Theorem , Humans , Registries , Retrospective Studies , Texas
18.
J Infect Dis ; 224(10): 1649-1657, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33914068

ABSTRACT

BACKGROUND: In contrast to studies that relied on volunteers or convenience sampling, there are few population-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence investigations and most were conducted early in the pandemic. The health department of the fourth largest US city recognized that sound estimates of viral impact were needed to inform decision making. METHODS: Adapting standardized disaster research methodology, in September 2020 the city was divided into high and low strata based on reverse-transcriptase polymerase chain reaction (RT-PCR) positivity rates; census block groups within each stratum were randomly selected with probability proportional to size, followed by random selection of households within each group. Using 2 immunoassays, the proportion of infected individuals was estimated for the city, by positivity rate and sociodemographic and other characteristics. The degree of underascertainment of seroprevalence was estimated based on RT-PCR-positive cases. RESULTS: Seroprevalence was estimated to be 14% with near 2-fold difference in areas with high (18%) versus low (10%) RT-PCR positivity rates and was 4 times higher compared to case-based surveillance data. CONCLUSIONS: Seroprevalence was higher than previously reported and greater than estimated from RT-PCR data. Results will be used to inform public health decisions about testing, outreach, and vaccine rollout.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Humans , RNA, Viral/analysis , SARS-CoV-2/genetics , Sensitivity and Specificity , Seroepidemiologic Studies , Texas/epidemiology
19.
Water Res ; 197: 117043, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33784608

ABSTRACT

As the COVID-19 pandemic continues to affect communities across the globe, the need to contain the spread of the outbreaks is of paramount importance. Wastewater monitoring of the SARS-CoV-2 virus, the causative agent responsible for COVID-19, has emerged as a promising tool for health officials to anticipate outbreaks. As interest in wastewater monitoring continues to grow and municipalities begin to implement this approach, there is a need to further identify and evaluate methods used to concentrate SARS-CoV-2 virus RNA from wastewater samples. Here we evaluate the recovery, cost, and throughput of five different concentration methods for quantifying SARS-CoV-2 virus RNA in wastewater samples. We tested the five methods on six different wastewater samples. We also evaluated the use of a bovine coronavirus vaccine as a process control and pepper mild mottle virus as a normalization factor. Of the five methods we tested head-to-head, we found that HA filtration with bead beating performed the best in terms of sensitivity and cost. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Vaccines , Cattle , Cities , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
20.
J Air Waste Manag Assoc ; 70(5): 568-579, 2020 05.
Article in English | MEDLINE | ID: mdl-32315255

ABSTRACT

The metal recycling industry provides jobs, generates revenue in local communities and conserves energy and resources. Nonetheless, possible negative impacts of metal recyclers (MRs) include the potential for emissions of metal aerosols and other dusts, noise, traffic and fire during operations. In Houston, Texas, there were more than 180 resident complaints about air quality related to MRs from 2006 to 2011 that were reported to the city's 311 call system. As a part of a community-based participatory research study, Metal Air Pollution Partnership Solutions (MAPPS), we evaluated the impact of metal emissions from MRs on air quality over two years in four environmental justice communities. We simultaneously collected samples of inhalable particles (aerodynamic particle size less than 10 µm, PM10) using a sampling strategy to capture emissions from the MRs while they were in operation at four locations within each community: an upwind location, the fence line of MR and two downwind locations and analyzed the samples for 10 metals. The highest values of iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), arsenic (As) and chromium (Cr) were detected at the fence lines of MRs. The normalized ratios of these metals at near and far neighborhood locations were 0.01 to 0.64 and 0.01 to 0.34, respectively, as compared with the metals at the fence line. The concentrations of metals rapidly decreased by 57-70% within 100 meters and reached similar levels at upwind (background) locations at approximately 600 meters. After adjusting the measured data for wind direction, rain and operating hours, we calculated non-carcinogenic hazard index values and carcinogenic risks for adult residents from breathing metals emitted from the facilities. Estimated inhalation cancer risks ranged from 0.12 case to 24 cases in 1 million people and the hazard index values ranged from 0.04 to 11.Implications: In Houston, Texas, residents complained about air quality related to metal recyclers from 2006 to 2011. Using a community-based participatory research method, metal emissions were characterized at four environmental justice communities. The results indicate that metal concentrations were the highest at the fence line and decreased by 57-70% within 100 meters and reached similar levels of background at 600 meters. After adjusting the measured data for meteorological parameters and operating hours, estimated inhalation cancer risks ranged from 0.12 cases to 24 cases in 1 million people and hazard index values ranged from 0.04 to 11.


Subject(s)
Air Pollutants/analysis , Arsenic/analysis , Metals/analysis , Particulate Matter/analysis , Recycling , Adult , Aerosols , Cities , Environmental Monitoring , Humans , Inhalation Exposure , Neoplasms , Risk Assessment , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...