Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(43): 37679-37684, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30280889

ABSTRACT

Focused ion beam (FIB) technology has become a valuable tool for the microelectronics industry and for the fabrication and preparation of samples at the micro/nanoscale. Its effects on the thermal transport properties of Si, however, are not well understood nor do experimental data exist. This paper presents a carefully designed set of experiments for the determination of the thermal conductivity of Si samples irradiated by Ga+ FIB. Generally, the thermal conductivity decreases with increasing ion dose. For doses of >1016 (Ga+/cm2), a reversal of the trend was observed due to recrystallization of Si. This report provides insight on the thermal transport considerations relevant to engineering of Si nanostructures and interfaces fabricated or prepared by FIB.

2.
J Nanosci Nanotechnol ; 17(3): 1616-621, 2017 03.
Article in English | MEDLINE | ID: mdl-29693985

ABSTRACT

The influence of Y2O3 nanolayers on thermoelectric performance and structure of 2% Al-doped ZnO (AZO) thin films has been studied. Multilayers based on five 50 nm thick AZO layers alternated with few nanometers thick Y2O3 layers were prepared by pulsed laser deposition on Al2O3 single crystals by alternate ablation of AZO target and Y2O3 target. The number of laser shots on Y2O3 target was maintained very low (5, 10 and 15 pulses in three separate experiments. The main phase (AZO) presents polycrystalline orientation and typical columnar growth not affected by the presence of Y2O3 nanolayers. The multilayer with 15 laser shots of Y2O3 showed best thermoelectric performance with electrical conductivity σ 48 S/cm and Seebeck coefficient S = −82 µV/K, which estimate power factor (S2·σ) about 0.03 × 10−3 W m−1 K−2 at 600 K. The value of thermal conductivity (κ) was found 10.03 W m−1 K−1 at 300 K, which is one third of typical value previously reported for bulk AZO. The figure of merit, ZT = S2·σ·T/κ, is calculated 9.6 × 10−4 at 600 K. These results demonstrated the feasibility of nanoengineered defects insertion for the depression of thermal conductivity.

3.
Rev Sci Instrum ; 87(9): 094902, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782592

ABSTRACT

The thermoreflectance-based techniques time- and frequency-domain thermoreflectance (TDTR and FDTR, respectively) have emerged as robust platforms to measure the thermophysical properties of a wide array of systems on varying length scales. Routine in the implementation of these techniques is the application of a thin metal film on the surface of the sample of interest to serve as an opto-thermal transducer ensuring the measured modulated reflectivity is dominated by the change in thermoreflectance of the sample. Here, we outline a method to directly measure the thermal conductivities of bulk materials without using a metal transducer layer using a standard TDTR/FDTR experiment. A major key in this approach is the use of a thermal model with z-dependent heat source when the optical penetration depth is comparable to the beam sizes and measuring the FDTR response at a long delay time to minimize non-thermoreflectivity contributions to the modulated reflectance signals (such as free carrier excitations). Using this approach, we demonstrate the ability to measure the thermal conductivity on three semiconductors, intrinsic Si (100), GaAs (100), and InSb (100), the results of which are validated with FDTR measurements on the same wafers with aluminum transducers. We outline the major sources of uncertainty in this approach, including frequency dependent heating and precise knowledge of the pump and probe spot sizes. As a result, we discuss appropriate pump-frequency ranges in which to implement this TDTR/FDTR approach and present a procedure to measure the effective spot sizes by fitting the FDTR data of an 80 nm Al/SiO2 sample at a time delay in which the spot size sensitivity dominates an FDTR measurement over the substrate thermal properties. Our method provides a more convenient way to directly measure the thermal conductivities of semiconductors.

4.
Phys Chem Chem Phys ; 15(26): 11078-87, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23715116

ABSTRACT

Thermal boundary resistance (inverse of conductance) between different material layers can dominate the overall thermal resistance in nanostructures and therefore impact the performance of the thermal property limiting nano devices. Because relationships between material properties and thermal boundary conductance have not been fully understood, optimum devices cannot be developed through a rational selection of materials. Here we develop generic interatomic potentials to enable material properties to be continuously varied in extremely large molecular dynamics simulations to explore the dependence of thermal boundary conductance on the characteristic properties of materials such as atomic mass, stiffness, and interfacial crystallography. To ensure that our study is not biased to a particular model, we employ different types of interatomic potentials. In particular, both a Stillinger-Weber potential and a hybrid embedded-atom-method + Stillinger-Weber potential are used to study metal-on-semiconductor compound interfaces, and the results are analyzed considering previous work based upon a Lennard-Jones (LJ) potential. These studies, therefore, reliably provide new understanding of interfacial transport phenomena particularly in terms of effects of material properties on thermal boundary conductance. Our most important finding is that thermal boundary conductance increases with the overlap of the vibrational spectra between metal modes and the acoustic modes of the semiconductor compound, and increasing the metal stiffness causes a continuous shift of the metal modes. As a result, the maximum thermal boundary conductance occurs at an intermediate metal stiffness (best matched to the semiconductor stiffness) that maximizes the overlap of the vibrational modes.

5.
J Pastoral Care ; 53(2): 145-51, 1999.
Article in English | MEDLINE | ID: mdl-10539620

ABSTRACT

Notes that pastoral counseling is an ancient ministry which brings rich resources to the contemporary efforts to develop wholistic healing. Provides a historical background summary, a sketch of Judeo-Christian tradition, and clinical examples to illustrate ways in which modern explorations in mind/body wellness can be enhanced by including the pastoral counseling project.


Subject(s)
Mental Healing , Pastoral Care , Counseling , Holistic Health , Humans , Psychophysiology , Religion and Medicine , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...