Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Environ Manage ; 365: 121381, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917546

ABSTRACT

Present and future climatic trends are expected to markedly alter water fluxes and stores in the hydrologic cycle. In addition, water demand continues to grow due to increased human use and a growing population. Sustainably managing water resources requires a thorough understanding of water storage and flow in natural, agricultural, and urban ecosystems. Measurements of stable isotopes of water (hydrogen and oxygen) in the water cycle (atmosphere, soils, plants, surface water, and groundwater) can provide information on the transport pathways, sourcing, dynamics, ages, and storage pools of water that is difficult to obtain with other techniques. However, the potential of these techniques for practical questions has not been fully exploited yet. Here, we outline the benefits and limitations of potential applications of stable isotope methods useful to water managers, farmers, and other stakeholders. We also describe several case studies demonstrating how stable isotopes of water can support water management decision-making. Finally, we propose a workflow that guides users through a sequence of decisions required to apply stable isotope methods to examples of water management issues. We call for ongoing dialogue and a stronger connection between water management stakeholders and water stable isotope practitioners to identify the most pressing issues and develop best-practice guidelines to apply these techniques.


Subject(s)
Agriculture , Ecosystem , Forests , Agriculture/methods , Water Resources , Isotopes/analysis , Groundwater/chemistry , Conservation of Water Resources/methods
2.
Environ Sci Technol ; 42(17): 6481-6, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18800518

ABSTRACT

This research combined the use of selective extractions and X-ray spectroscopyto examine the fate of As and Cr in a podzolic soil contaminated by chromated copper arsenate (CCA). Iron was enriched in the upper 30 cm due to a previous one-time treatment of the soil with Fe(II). High oxalate-soluble Al concentrations in the Bs horizon of the soil and micro-XRD data indicated the presence of short-range ordered aluminosilicates (i.e., proto-imogolite allophane, PIA). In the surface layers, Cr, as Cr(III), was partitioned between a mixed Fe(III)/ Cr(III) solid phase that formed upon the Fe(II) application (25-50%) and a recalcitrant phase (50-75%) likely consisting of organic material such as residual CCA-treated wood. Deeper in the profile Cr appeared to be largely in the form of extractable (hydr)oxides. Throughout the soil, As was present as As(V). In the surface layers a considerable fraction of As was also associated with a recalcitrant phase, probably CCA-treated woody debris, and the remainder was associated with (hydr)oxide-like solid phases. In the Bs horizon, however, XAS and XRF findings strongly pointed to the presence of PIA acting as an effective adsorbent for As. This research shows for the first time the relevance of PIA for the adsorption of As in natural soils.


Subject(s)
Arsenates/chemistry , Arsenic/isolation & purification , Chromium/isolation & purification , Soil Pollutants/isolation & purification , Arsenic/analysis , Chromium/analysis , Soil Pollutants/analysis , Spectrum Analysis/methods , X-Rays
3.
J Contam Hydrol ; 85(3-4): 159-78, 2006 May 30.
Article in English | MEDLINE | ID: mdl-16530293

ABSTRACT

Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.


Subject(s)
Arsenic/analysis , Chromium/analysis , Soil/analysis , Water/analysis , Arsenates/analysis , Arsenates/chemistry , Electric Conductivity , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Soil Pollutants/analysis , Soil Pollutants/chemistry , Time Factors , Water/chemistry , Water Pollutants, Chemical/analysis , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...