Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 447(7142): 292-4, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17507977

ABSTRACT

In 2005, plumes were detected near the south polar region of Enceladus, a small icy satellite of Saturn. Observations of the south pole revealed large rifts in the crust, informally called 'tiger stripes', which exhibit higher temperatures than the surrounding terrain and are probably sources of the observed eruptions. Models of the ultimate interior source for the eruptions are under consideration. Other models of an expanding plume require eruptions from discrete sources, as well as less voluminous eruptions from a more extended source, to match the observations. No physical mechanism that matches the observations has been identified to control these eruptions. Here we report a mechanism in which temporal variations in tidal stress open and close the tiger-stripe rifts, governing the timing of eruptions. During each orbit, every portion of each tiger stripe rift spends about half the time in tension, which allows the rift to open, exposing volatiles, and allowing eruptions. In a complementary process, periodic shear stress along the rifts also generates heat along their lengths, which has the capacity to enhance eruptions. Plume activity is expected to vary periodically, affecting the injection of material into Saturn's E ring and its formation, evolution and structure. Moreover, the stresses controlling eruptions imply that Enceladus' icy shell behaves as a thin elastic layer, perhaps only a few tens of kilometres thick.

2.
Science ; 288(5469): 1193-8, 2000 May 19.
Article in English | MEDLINE | ID: mdl-10817986

ABSTRACT

During late 1999/early 2000, the solid state imaging experiment on the Galileo spacecraft returned more than 100 high-resolution (5 to 500 meters per pixel) images of volcanically active Io. We observed an active lava lake, an active curtain of lava, active lava flows, calderas, mountains, plateaus, and plains. Several of the sulfur dioxide-rich plumes are erupting from distal flows, rather than from the source of silicate lava (caldera or fissure, often with red pyroclastic deposits). Most of the active flows in equatorial regions are being emplaced slowly beneath insulated crust, but rapidly emplaced channelized flows are also found at all latitudes. There is no evidence for high-viscosity lava, but some bright flows may consist of sulfur rather than mafic silicates. The mountains, plateaus, and calderas are strongly influenced by tectonics and gravitational collapse. Sapping channels and scarps suggest that many portions of the upper approximately 1 kilometer are rich in volatiles.


Subject(s)
Extraterrestrial Environment , Jupiter , Space Flight , Volcanic Eruptions , Geological Phenomena , Geology , Image Enhancement , Spectrophotometry, Infrared
3.
Science ; 285(5435): 1899-902, 1999 Sep 17.
Article in English | MEDLINE | ID: mdl-10489365

ABSTRACT

Cycloidal patterns are widely distributed on the surface of Jupiter's moon Europa. Tensile cracks may have developed such a pattern in response to diurnal variations in tidal stress in Europa's outer ice shell. When the tensile strength of the ice is reached, a crack may occur. Propagating cracks would move across an ever-changing stress field, following a curving path to a place and time where the tensile stress was insufficient to continue the propagation. A few hours later, when the stress at the end of the crack again exceeded the strength, propagation would continue in a new direction. Thus, one arcuate segment of the cycloidal chain would be produced during each day on Europa. For this model to work, the tensile strength of Europa's ice crust must be less than 40 kilopascals, and there must be a thick fluid layer below the ice to allow sufficient tidal amplitude.


Subject(s)
Jupiter , Extraterrestrial Environment , Ice
4.
Nature ; 391(6665): 368-70, 1998 Jan 22.
Article in English | MEDLINE | ID: mdl-9450751

ABSTRACT

Non-synchronous rotation of Europa was predicted on theoretical grounds, by considering the orbitally averaged torque exerted by Jupiter on the satellite's tidal bulges. If Europa's orbit were circular, or the satellite were comprised of a frictionless fluid without tidal dissipation, this torque would average to zero. However, Europa has a small forced eccentricity e approximately 0.01 , generated by its dynamical interaction with Io and Ganymede, which should cause the equilibrium spin rate of the satellite to be slightly faster than synchronous. Recent gravity data suggest that there may be a permanent asymmetry in Europa's interior mass distribution which is large enough to offset the tidal torque; hence, if non-synchronous rotation is observed, the surface is probably decoupled from the interior by a subsurface layer of liquid or ductile ice. Non-synchronous rotation was invoked to explain Europa's global system of lineaments and an equatorial region of rifting seen in Voyager images. Here we report an analysis of the orientation and distribution of these surface features, based on initial observations made by the Galileo spacecraft. We find evidence that Europa spins faster than the synchronous rate (or did so in the past), consistent with the possibility of a global subsurface ocean.


Subject(s)
Jupiter
SELECTION OF CITATIONS
SEARCH DETAIL
...