Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 294(6): 1967-1983, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30538131

ABSTRACT

Toxoplasma gondii is an intracellular parasite that causes disseminated infections that can produce neurological damage in fetuses and immunocompromised individuals. Microneme protein 2 (MIC2), a member of the thrombospondin-related anonymous protein (TRAP) family, is a secreted protein important for T. gondii motility, host cell attachment, invasion, and egress. MIC2 contains six thrombospondin type I repeats (TSRs) that are modified by C-mannose and O-fucose in Plasmodium spp. and mammals. Here, using MS analysis, we found that the four TSRs in T. gondii MIC2 with protein O-fucosyltransferase 2 (POFUT2) acceptor sites are modified by a dHexHex disaccharide, whereas Trp residues within three TSRs are also modified with C-mannose. Disruption of genes encoding either POFUT2 or the putative GDP-fucose transporter (NST2) resulted in loss of MIC2 O-fucosylation, as detected by an antibody against the GlcFuc disaccharide, and in markedly reduced cellular levels of MIC2. Furthermore, in 10-15% of the Δpofut2 or Δnst2 vacuoles, MIC2 accumulated earlier in the secretory pathway rather than localizing to micronemes. Dissemination of tachyzoites in human foreskin fibroblasts was reduced for these knockouts, which both exhibited defects in attachment to and invasion of host cells comparable with the Δmic2 phenotype. These results, indicating that O-fucosylation of TSRs is required for efficient processing of MIC2 and for normal parasite invasion, are consistent with the recent demonstration that Plasmodium falciparum Δpofut2 strain has decreased virulence and also support a conserved role for this glycosylation pathway in quality control of TSR-containing proteins in eukaryotes.


Subject(s)
Cell Adhesion Molecules/metabolism , Fucosyltransferases/metabolism , Life Cycle Stages , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Cell Adhesion Molecules/genetics , Fucose/genetics , Fucose/metabolism , Fucosyltransferases/genetics , Glycosylation , Humans , Protozoan Proteins/genetics , Repetitive Sequences, Amino Acid , Toxoplasma/genetics , Toxoplasma/growth & development
2.
Glycobiology ; 28(5): 333-343, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29432542

ABSTRACT

In many metazoan species, an unusual type of protein glycosylation, called C-mannosylation, occurs on adhesive thrombospondin type 1 repeats (TSRs) and type I cytokine receptors. This modification has been shown to be catalyzed by the Caenorhabditis elegans DPY-19 protein and orthologues of the encoding gene were found in the genome of apicomplexan parasites. Lately, the micronemal adhesin thrombospondin-related anonymous protein (TRAP) was shown to be C-hexosylated in Plasmodium falciparum sporozoites. Here, we demonstrate that also the micronemal protein MIC2 secreted by Toxoplasma gondii tachyzoites is C-hexosylated. When expressed in a mammalian cell line deficient in C-mannosylation, P. falciparum and T. gondii Dpy19 homologs were able to modify TSR domains of the micronemal adhesins TRAP/MIC2 family involved in parasite motility and invasion. In vitro, the apicomplexan enzymes can transfer mannose to a WXXWXXC peptide but, in contrast to C. elegans or mammalian C-mannosyltransferases, are inactive on a short WXXW peptide. Since TSR domains are commonly found in apicomplexan surface proteins, C-mannosylation may be a common modification in this phylum.


Subject(s)
Mannosyltransferases/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Thrombospondin 1/metabolism , Toxoplasma/metabolism , Animals , CHO Cells , Caenorhabditis elegans/enzymology , Cricetulus , Plasmodium falciparum/enzymology , Toxoplasma/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL