Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 85(5): 1707-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25263750

ABSTRACT

The primary objectives of this study were to document the macroscopic and histological structure of the alimentary tract (AT) of the convict cichlid Amatitlania nigrofasciata, because there are no data available for this omnivorous freshwater fish of the family Cichlidae. The morphology of the AT of A. nigrofasciata resembles that of related species. While having morphological criteria of the AT typical of most omnivorous fishes, such as a blind sac stomach and medium length intestine, A. nigrofasciata also has some structural peculiarities: the oesophagus is lined by a uniform stratified squamous epithelial layer with interspersed goblet cells along its entire length. Additionally, it has well-developed layers of the tunica muscularis including muscle fibre bundles that ascend into its mucosal folds. Occasionally, taste buds are present. In the transitional area between oesophagus and stomach, a prominent torus-like closure device is present. The mucosa of the stomach cannot be divided into different regions according to mucosal and morphological properties. The simple pattern of intestinal loops of A. nigrofasciata has few variations, irrespective of sex, mass and length of the individual fish. The first segment of the intestine is characterized by the largest mucososerosal ratio and the most complex mucosal surface architecture. A distinction of midgut and hindgut was not possible in A. nigrofasciata due to lack of defining structural components as described for other fish species.


Subject(s)
Cichlids/anatomy & histology , Digestive System/anatomy & histology , Animals , Esophagus/anatomy & histology , Female , Intestines/anatomy & histology , Male , Microscopy , Stomach/anatomy & histology
2.
Clin Hemorheol Microcirc ; 58(1): 107-13, 2014.
Article in English | MEDLINE | ID: mdl-25227193

ABSTRACT

Implantable long-term central venous port systems (CVPS) are widely used as a permanent means of accessing the vascular system for intravenous delivery of drugs, parenteral nutrition, blood transfusion, and blood sampling. These systems allow easy and repetitive puncture without causing much damage to the vessels. However, the body foreign surface of CVPS induces an inflammatory response with varying intensity (depending on the implant materials) that leads to formation of a fibrous tissue capsule around the implant. This study was designed to investigate the influence of bacterial infection on the tissue reaction induced by implanted CVPS in adult patients. 20 patients (9 women, 11 men, 58 ± 14 yrs of age) were included in this study. These patients received explantation of a polysulfone based CVPS (ChemoSite™, Covidien, Mansfield, USA) due to port related infections (patients with bacterial infections at the implantation site: group A, 5 men, 1 women) or to other reasons such as termination of treatment, thrombosis, or CVPS dysfunction (patients without bacterial infections, group B, 6 men, 8 women) 299.9 ± 261.2 days after CVPS implantation. A sample of the encapsulating tissue covering the CVPS together with surrounding tissue (at least 1 × 1 cm2) was placed in a small container with fixing agent, a buffered neutral 4% formalin solution (pH 7). Histological sections of the samples were prepared for light microscopic analysis after paraffin embedding. Sections of 3 µm were cut and stained with haematoxylin and eosin, Weigert's elastic stain, and Heidenhain's azan stain. There was no difference in thickness, collagen and elastin content, or cell and capillary density of the fibrous capsule between both groups. Due to the wound healing reaction involving angiogenesis and fibroblast activation cell density and number of capillaries in the capsule tissue of all patients showed a positive correlation (r = 0.45, p < 0.05). However, the study demonstrated that at the end of the foreign body reaction the artificial tissue layer which covers the CVPS after implantation due to foreign body reaction shows only low reactivity towards infections.


Subject(s)
Biocompatible Materials/chemistry , Catheterization, Central Venous/adverse effects , Central Venous Catheters , Foreign-Body Reaction , Surgical Wound Infection/pathology , Adult , Aged , Bacterial Infections/blood , Bacterial Infections/diagnosis , Blood Pressure , Capillaries , Collagen/chemistry , Elasticity , Elastin/chemistry , Female , Fibroblasts/metabolism , Humans , Infusions, Intravenous , Male , Middle Aged , Neovascularization, Pathologic , Postoperative Complications , Wound Healing
3.
Clin Hemorheol Microcirc ; 55(4): 473-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24113501

ABSTRACT

It is well known that clinically relevant concentrations of iodine-containing radiographic contrast media (CM) induce morphological changes in human erythrocytes. However, there are only few reports about CM effects on erythrocytes of animals (e.g. mice, rats, rabbits, and pigs). Thus, two conventional iodine-containing CM (iodixanol, Visipaque™ 320; iomeprol, Iomeprol™ 350) were tested for their effects on the morphology of erythrocytes from these. After venous blood sampling and blood centrifugation, the autologous plasma was supplemented with 40 vol% CM. Then, a defined number of erythrocytes was incubated in this CM-supplemented plasma for 5 min at body temperature (37°C). Subsequently, 10 µL of the cell suspension were transferred to a purified glass slide and the number of discocytes, echinocytes, and acanthocytes was counted within a total number of 100 erythrocytes (40 fold primary magnification, transmitted light mode). Shape changes of the erythrocytes from all animal species strongly depended on the type of CM and compared to the effects which have already been described for human erythrocytes. Incubation in both CM resulted in morphological changes of the erythrocytes. Incubation in a iodixanol/plasma mixture induced the lowest echinocyte or acanthocyte formation. Porcine erythrocytes showed a much more distinct shape change than those of other animal species and humans. These results suggest erythrocytes from mice, rats, and rabbits are a suitable model system for a model system for human erythrocytes when CM effects on the cellular shape of erythrocytes have to be tested. The distinct deformation of the pig erythrocytes could be due to differences in the pig erythrocyte membrane or the physical and chemical constitution of pig erythrocytes.


Subject(s)
Contrast Media/pharmacology , Erythrocytes/drug effects , Iodine/pharmacology , Animals , Cell Shape/drug effects , Erythrocytes/cytology , Female , Humans , Mice , Phenotype , Rabbits , Rats , Swine
4.
Clin Hemorheol Microcirc ; 55(4): 491-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24113502

ABSTRACT

Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.


Subject(s)
Biocompatible Materials/chemistry , Complement C5a/metabolism , Fibroblasts/cytology , Silicon/chemistry , Tissue Engineering/methods , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Fibroblasts/drug effects , Humans , Materials Testing , Phenotype , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...