Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 756: 143600, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33248778

ABSTRACT

Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.

2.
Sci Total Environ ; 705: 135957, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31841918

ABSTRACT

Drought is a damaging and costly natural disaster that frequently affects many climatic regions in the world. A multi-criteria-based approach for integrated spatial drought vulnerability mapping that combines all drought categories is required to generate detailed vulnerability information for formulating drought mitigation strategies. This study presents a spatial multi-criteria integrated approach for mapping comprehensive drought vulnerability using geospatial techniques and an analytical hierarchy process (AHP). The developed approach was applied in the northwestern region of Bangladesh to justify its applicability. A total of 17 criteria under 4 drought categories, namely, meteorological, agricultural, hydrological and socio-economic, were selected. Moreover, spatial layers for each criterion were developed. AHP was used to calculate the weights for each criterion and drought types using pair-wise comparison matrices. Individual categories of drought and overall drought vulnerability maps were developed using the weighted overlay technique by integrating the corresponding criteria. The produced maps effectively defined the spatial extents and levels (e.g. normal, mild, moderate, severe and extreme) of drought vulnerability. Results demonstrated that approximately 77% of the total area of the north-western region of Bangladesh was moderately to extremely vulnerable to drought. The output of the developed approach was successfully validated using the receiver operating characteristics and area under the curve techniques. The findings suggest that the proposed approach is highly effective in mapping comprehensive drought vulnerability for formulating strong drought mitigation strategies.

3.
Sci Total Environ ; 692: 10-22, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31336296

ABSTRACT

Tropical cyclones frequently affect millions of people, damaging properties, livelihoods and environments in the coastal region of Bangladesh. The intensity and extent of tropical cyclones and their impacts are likely to increase in the future due to climate change. The eastern coastal region of Bangladesh is one of the most cyclone-affected coastal regions. A comprehensive spatial assessment is therefore essential to produce a risk map by identifying the areas under high cyclone risks to support mitigation strategies. This study aims to develop a comprehensive tropical cyclone risk map using geospatial techniques and to quantify the degree of risk in the eastern coastal region of Bangladesh. In total, 14 spatial criteria under three risk components, namely, vulnerability and exposure, hazard, and mitigation capacity, were assessed. A spatial layer was created for each criterion, and weighting was conducted following the Analytical Hierarchy Process. The individual risk component maps were generated from their indices, and subsequently, the overall risk map was produced by integrating the indices through a weighted overlay approach. Results demonstrate that the very-high risk zone covered 9% of the study area, whereas the high-risk zone covered 27%. Specifically, the south-western (Sandwip and Sonagazi), western (Patiya, Kutubdia, Maheshkhali, Chakaria, Cox's Bazar and Chittagong Sadar) and south-western (Teknaf) regions of the study site are likely to be under a high risk of tropical cyclone impacts. Low and very-low hazard zones constitute 11% and 28% of the study area, respectively, and most of these areas are located inland. The results of this study can be used by the concerned authorities to develop and apply effective cyclone impact mitigation plans and strategies.

4.
Sensors (Basel) ; 19(6)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875881

ABSTRACT

Floods are common natural disasters worldwide, frequently causing loss of lives and huge economic and environmental damages. A spatial vulnerability mapping approach incorporating multi-criteria at the local scale is essential for deriving detailed vulnerability information for supporting flood mitigation strategies. This study developed a spatial multi-criteria-integrated approach of flood vulnerability mapping by using geospatial techniques at the local scale. The developed approach was applied on Kalapara Upazila in Bangladesh. This study incorporated 16 relevant criteria under three vulnerability components: physical vulnerability, social vulnerability and coping capacity. Criteria were converted into spatial layers, weighted and standardised to support the analytic hierarchy process. Individual vulnerability component maps were created using a weighted overlay technique, and then final vulnerability maps were produced from them. The spatial extents and levels of vulnerability were successfully identified from the produced maps. Results showed that the areas located within the eastern and south-western portions of the study area are highly vulnerable to floods due to low elevation, closeness to the active channel and more social components than other parts. However, with the integrated coping capacity, western and south-western parts are highly vulnerable because the eastern part demonstrated particularly high coping capacity compared with other parts. The approach provided was validated by qualitative judgement acquired from the field. The findings suggested the capability of this approach to assess the spatial vulnerability of flood effects in flood-affected areas for developing effective mitigation plans and strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...