Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12130, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840651

ABSTRACT

A new type of interferometric fiber sensor based on a Mach-Zehnder Fabry-Perot hybrid scheme has been experimentally demonstrated. The interferometer combines the benefits of both a double-path configuration and an optical resonator, leading to record-high strain and phase resolutions limited only by the intrinsic thermal noise in optical fibers across a broad frequency range. Using only off-the-shelf components, the sensor is able to achieve noise-limited strain resolutions of 40 f[Formula: see text]/[Formula: see text] at 10 Hz and 1 f[Formula: see text]/[Formula: see text] at 100 kHz. With a proper scale-up, atto-strain resolutions are believed to be within reach in the ultrasonic frequency range with such interferometers.

2.
Sensors (Basel) ; 23(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36616857

ABSTRACT

High resolution optical interferometry often requires thermal and acoustic insultation to reduce and remove environment-induced fluctuations. Broader applications of interferometric optical sensors in the future call for low-cost materials with both low thermal diffusivity and good soundproofing capability. In this paper, we explore the feasibility and effectiveness of natural soil as an insulation material for ultrahigh-resolution fiber-optic interferometry. An insulation chamber surrounded by soil is constructed, and its impact on the noise reduction of a Mach-Zehnder Fabry-Perot hybrid fiber interferometer is evaluated. Our results indicate that soil can effectively reduce ambient noise across a broad frequency range. Moreover, compared to conventional insulation materials such as polyurethane foam, soil shows superior insulation performance at low frequencies and thereby affords better long-term stability. This work demonstrates the practicability of soil as a legitimate option of insulation material for precision optical experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...