Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; (3): 345-54, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18411844

ABSTRACT

The synthesis of N,S-heterodisubstituted 1-(2'-pyridyl)-2-SR-1,2-closo-C2B10H10 compounds (R = Et, 2; R = (i)Pr, 3) has been accomplished starting from 1-(2'-pyridyl)-l,2-closo-C2B10H11 (1), and their partial deboronation reaction leading to the structurally chiral [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H10]-derivatives (R = Et, [4]-; R = (i)Pr, [5]-) has been studied. Capillary electrophoresis combined with the chiral selector alpha-cyclodextrin has permitted the separation of the electrophoretically pure racemic [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H11]- ions into two peaks each one corresponding to the interaction of one enantiomer with the alpha-cyclodextrin. The N,S-heterodisubstituted o-carborane containing a mercapto group, 1-(2'-pyridyl)-2-SH-1,2-closo-C2B10H10, 1, is one of the two examples of a rigid bidentate chelating (pyridine)N-C-C-C-S(H) motif having been structurally fully characterized. To study the potential of such a binding site, 1 has been tested as a ligand with metal ions requiring different coordination numbers, two (Au(+)) and four (Pd2+ and Rh+). The crystal structures of the Pd(II) and Au(I) complexes are reported. For the Pd(II) complex, 1 acts as a bidentate ligand whereas for Au(I), 1 acts as a monodentate ligand through the thiolate.

2.
J Chromatogr A ; 1051(1-2): 75-84, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15532558

ABSTRACT

Electrophoretic and photometric experiments strongly indicate that monovalent anions, which arise by deprotonation of the nitrogen atom in zwitterionic Good's buffers 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid (CAPSO) and 3-morpholinopropanesulfonic acid (MOPS), spontaneously aggregate. Cationic migration of sanguinarine (SA) and chelerythrine (CHE) in highly alkaline 1,3-bis[tris(hydroxymethyl)methylamino]propane (Bis-Tris-propane), in which the concentration of cations of both alkaloids is negligible, may be explained by the existence of an aggregate, which contains uncharged sanguinarine or chelerythrine and one monovalent cation of Bis-Tris-propane at least. Tendency of tris(hydroxymethyl)aminomethane (Tris), bis (2-hydroxyethyl)iminotris(hydroxymethyl)methane (Bis-Tris) and Bis-Tris-propane cations to ion pairing with synthetic cluster borane anions and with fused silica markedly rises up with the size and charge of these cations. The drop in mobility of cluster borane compounds sometimes exceeds 50% of their mobility found at identical pH and ionic strength in buffers with sodium cation. The electroosmosis drop approached 70% if background electrolyte contained Bis-Tris-propane cations instead of sodium cations. Nitrate, taken as a model inorganic ion, and four randomly chosen organic anions interacted markedly less with Tris, Bis-Tris and Bis-Tris-propane cations than cluster borane anions. 2-(N-morpholino)ethanesulfonic (MES) acid anions present in background electrolyte affect the ion pairing of Tris, Bis-Tris and Bis-Tris-propane cations with anionic analytes and, in this way influence also mobilites of these anionic analytes. Limited hydrophilicity at least one of interacting species appears to be the most probable cause of observed intermolecular interactions of biological buffers.


Subject(s)
Alkaloids/chemistry , Electrophoresis, Capillary/methods , Phenanthridines/chemistry , Spectrophotometry, Ultraviolet/methods , Benzophenanthridines , Buffers , Isoquinolines
SELECTION OF CITATIONS
SEARCH DETAIL
...