Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 23(19): 5923-5935, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28679766

ABSTRACT

Purpose: Activation of the receptor tyrosine kinase MET is associated with poor clinical outcome in certain cancers. To target MET more effectively, we developed an antagonistic antibody mixture, Sym015, consisting of two humanized mAbs directed against nonoverlapping epitopes of MET.Experimental Design/Results: We screened a large panel of well-annotated human cancer cell lines and identified a subset with highly elevated MET expression. In particular, cell lines of lung cancer and gastric cancer origin demonstrated high MET expression and activation, and Sym015 triggered degradation of MET and significantly inhibited growth of these cell lines. Next, we tested Sym015 in patient- and cell line-derived xenograft models with high MET expression and/or MET exon 14 skipping alterations, and in models harboring MET amplification as a mechanism of resistance to EGFR-targeting agents. Sym015 effectively inhibited tumor growth in all these models and was superior to an analogue of emibetuzumab, a monoclonal IgG4 antibody against MET currently in clinical development. Sym015 also induced antibody-dependent cellular cytotoxicity (ADCC) in vitro, suggesting that secondary effector functions contribute to the efficacy of Sym015.Retrospectively, all responsive, high MET-expressing models were scored as highly MET-amplified by in situ hybridization, pointing to MET amplification as a predictive biomarker for efficacy. Preclinical toxicology studies in monkeys showed that Sym015 was well tolerated, with a pharmacokinetic profile supporting administration of Sym015 every second or third week in humans.Conclusions: The preclinical efficacy and safety data provide a clear rationale for the ongoing clinical studies of Sym015 in patients with MET-amplified tumors. Clin Cancer Res; 23(19); 5923-35. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/administration & dosage , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/genetics , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Epitopes/immunology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Amplification/genetics , Humans , Mice , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/immunology , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 15(7): 1614-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27196767

ABSTRACT

Squamous cell carcinomas (SCC) arising in upper parts of the aerodigestive tract are among the leading causes of death worldwide. EGFR has been found to play an essential role in driving the malignancy of SCC of the upper aerodigestive tract (SCCUAT), but, despite this, clinical results using a range of different EGFR-targeted agents have been disappointing. Cetuximab is currently the only EGFR-targeted agent approved by the FDA for treatment of SCCUAT. However, intrinsic and acquired cetuximab resistance is a major problem for effective therapy. Thus, a better understanding of the mechanisms responsible for cetuximab resistance is valuable for development of the next generation of antibody therapeutics. In order to better understand the underlying mechanisms of cetuximab resistance in SCCUAT, we established from cetuximab-sensitive models cell lines with acquired resistance to cetuximab by continuous selective pressure in vitro and in vivo Our results show that resistant clones maintain partial dependency on EGFR and that receptor tyrosine kinase plasticity mediated by HER3 and IGF1R plays an essential role. A multitarget mAb mixture against EGFR, HER3, and IGF1R was able to overcome cetuximab resistance in vitro To our surprise, these findings could be extended to include SCCUAT cell lines with intrinsic resistance to cetuximab, suggesting that the triad consisting of EGFR, HER3, and IGF1R plays a key role in SCCUAT. Our results thus provide a rationale for simultaneous targeting of EGFR, HER3, and IGF1R in SCCUAT. Mol Cancer Ther; 15(7); 1614-26. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cetuximab/pharmacology , Digestive System Neoplasms/metabolism , Drug Resistance, Neoplasm , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Digestive System Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression , Humans , Mice , Receptor Protein-Tyrosine Kinases/genetics , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
3.
Clin Cancer Res ; 22(13): 3260-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26888827

ABSTRACT

PURPOSE: Approved anti-EGFR antibodies cetuximab and panitumumab provide significant clinical benefit in patients with metastatic colorectal cancer (MCRC). However, patients ultimately develop disease progression, often driven by acquisition of mutations in the extracellular domain (ECD) of EGFR. Sym004 is a novel 1:1 mixture of two nonoverlapping anti-EGFR mAbs that recently showed promising clinical activity in a phase I trial in MCRC. Our aim was to determine the efficacy of Sym004 to circumvent cetuximab resistance driven by EGFR ECD mutations. EXPERIMENTAL DESIGN: Functional studies were performed to assess drug-receptor binding as well as ligand-dependent activation of individual EGFR mutants in the presence of cetuximab, panitumumab, and Sym004. Cell viability and molecular effects of the drugs were assayed in cetuximab-resistant cell lines and in tumor xenograft models. Efficacy of Sym004 was evaluated in patients progressing to cetuximab that harbored EGFR mutation in the post-cetuximab tumor sample. RESULTS: Contrary to cetuximab and panitumumab, Sym004 effectively bound and abrogated ligand-induced phosphorylation of all individual EGFR mutants. Cells resistant to cetuximab harboring mutations in EGFR maintained sensitivity to Sym004, which was consistent with an effective suppression of EGFR downstream signaling, translating into profound and sustained tumor regression in the xenograft model. As proof-of-principle, a patient with a tumor harboring an EGFR mutation (G465R) following cetuximab therapy benefited from Sym004 therapy. CONCLUSIONS: Sym004 is an active drug in MCRC resistant to cetuximab/panitumumab mediated by EGFR mutations. EGFR mutations are potential biomarkers of response to Sym004 to be evaluated in ongoing large clinical trials. Clin Cancer Res; 22(13); 3260-7. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , 3T3 Cells , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Male , Mice , Mice, Inbred BALB C , Mutation , Panitumumab , Signal Transduction/drug effects , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...