Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 330(1): 220-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19369579

ABSTRACT

Migraine is a frequent and often disabling disease. Treatment is unsatisfactory in many patients. A disturbed dynamic balance between excitatory and inhibitory signal processing with enhanced cortical activity probably underlies common forms of migraine. Presynaptic voltage-gated Ca(2+) channels are critical determinants of neurotransmitter release and also contribute to trigeminovascular signal transduction. Because clinical evidence exists for migraine-prophylactic actions of Petasites hybridus extracts, we investigated whether petasins comprising the main constituents of the extract inhibit currents through presynaptic Ca(v)2.1 channels expressed in Xenopus laevis oocytes. P. hybridus extract (0.02 mg/ml), petasin, neopetasin, isopetasin, S-petasin, and iso-S-petasin (50 microM) were weak tonic blockers of Ca(v)2.1-mediated barium currents (I(Ba)) during infrequent depolarizations (0.1 Hz), but their inhibitory potency increased at higher stimulation rates (1 Hz), indicating preferential block of open and/or inactivated channels. Sulfur-containing compounds (S-petasin, Iso-S-petasin) were the most potent significantly promoting the accumulation of Ca(v)2.1 channel in inactivated states during pulse trains (I(Ba) decrease during 1-Hz pulse trains: control, 45%, S-petasin, 79%; iso-S-petasin, 80%). For the Eucalyptus williamsiania sesquiterpenes alpha- and gamma-eudesmol, a comparable use-dependent inhibition was found in addition to a tonic block component. Alpha-eudesmol and petasins accelerated the voltage-dependent inactivation of Ca(v)2.1 channels during depolarizations. We demonstrate that S-petasin, iso-S-petasin, and eudesmol are Ca(v)2.1 channel inhibitors preferentially acting as use-dependent channel blockers and with the sulfur-containing substituent in position 3 of the petasins serving as important functional feature. The Ca(v)2.1-inhibitory properties of these petasins may contribute to migraine-prophylactic properties described for P. hybridus extracts.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Oils, Volatile/pharmacology , Petasites/physiology , Sesquiterpenes/pharmacology , Animals , Calcium Channel Blockers/isolation & purification , Calcium Channels, N-Type/physiology , Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/metabolism , Female , Oils, Volatile/isolation & purification , Petasites/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Sesquiterpenes/isolation & purification , Xenopus laevis
2.
Channels (Austin) ; 2(6): 461-73, 2008.
Article in English | MEDLINE | ID: mdl-18797193

ABSTRACT

Depolarisation-induced Ca2+ influx into electrically excitable cells is determined by the density of voltage-gated Ca2+ channels at the cell surface. Surface expression is modulated by physiological stimuli as well as by drugs and can be altered under pathological conditions. Extracellular epitope-tagging of channel subunits allows to quantify their surface expression and to distinguish surface channels from those in intracellular compartments. Here we report the first systematic characterisation of extracellularly epitope-tagged Ca(V)2.1 channels. We identified a permissive region in the pore-loop of repeat IV within the Ca(V)2.1 alpha(1) subunit, which allowed integration of several different tags (hemagluttinine [HA], double HA; 6-histidine tag [His], 9-His, bungarotoxin-binding site) without compromising alpha(1) subunit protein expression (in transfected tsA-201 cells) and function (after expression in X. laevis oocytes). Immunofluorescence studies revealed that the double-HA tagged construct (1722-HAGHA) was targeted to presynaptic sites in transfected cultured hippocampal neurons as expected for Ca(V)2.1 channels. We also demonstrate that introduction of tags into this permissive position creates artificial sites for channel modulation. This was demonstrated by partial inhibition of 1722-HA channel currents with anti-HA antibodies and the concentration-dependent stimulation or partial inhibition by Ni-nitrilo triacetic acid (NTA) and novel bulkier derivatives (Ni-trisNTA, Ni-tetrakisNTA, Ni-nitro-o-phenyl-bisNTA, Ni-nitro-p-phenyl-bisNTA). Therefore our data also provide evidence for the concept that artificial modulatory sites for small ligands can be introduced into voltage-gated Ca2+ channel for their selective modulation.


Subject(s)
Calcium Channels, N-Type/drug effects , Molecular Probe Techniques , Presynaptic Terminals/chemistry , Calcium Channels, N-Type/analysis , Electrophysiology , Hippocampus/cytology , Humans , Ion Channel Gating , Neurons/physiology , Protein Subunits
SELECTION OF CITATIONS
SEARCH DETAIL
...