Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 825, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36808153

ABSTRACT

Neuropsychiatric disorders (NPDs) are frequently co-morbid with epilepsy, but the biological basis of shared risk remains poorly understood. The 16p11.2 duplication is a copy number variant that confers risk for diverse NPDs including autism spectrum disorder, schizophrenia, intellectual disability and epilepsy. We used a mouse model of the 16p11.2 duplication (16p11.2dup/+) to uncover molecular and circuit properties associated with this broad phenotypic spectrum, and examined genes within the locus capable of phenotype reversal. Quantitative proteomics revealed alterations to synaptic networks and products of NPD risk genes. We identified an epilepsy-associated subnetwork that was dysregulated in 16p11.2dup/+ mice and altered in brain tissue from individuals with NPDs. Cortical circuits from 16p11.2dup/+ mice exhibited hypersynchronous activity and enhanced network glutamate release, which increased susceptibility to seizures. Using gene co-expression and interactome analysis, we show that PRRT2 is a major hub in the epilepsy subnetwork. Remarkably, correcting Prrt2 copy number rescued aberrant circuit properties, seizure susceptibility and social deficits in 16p11.2dup/+ mice. We show that proteomics and network biology can identify important disease hubs in multigenic disorders, and reveal mechanisms relevant to the complex symptomatology of 16p11.2 duplication carriers.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Animals , Mice , Autism Spectrum Disorder/genetics , Brain , Chromosome Deletion , DNA Copy Number Variations , Epilepsy/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Phenotype
2.
Neuropsychopharmacology ; 48(7): 1000-1010, 2023 06.
Article in English | MEDLINE | ID: mdl-36376465

ABSTRACT

Bipolar disorder (BD) is a highly heritable mood disorder with intermittent episodes of mania and depression. Lithium is the first-in-line medication to treat BD, but it is only effective in a subset of individuals. Large-scale human genomic studies have repeatedly linked the ANK3 gene (encoding ankyrin-G, AnkG) to BD. Ank3 knockout mouse models mimic BD behavioral features and respond positively to lithium treatment. We investigated cellular phenotypes associated with BD, including dendritic arborization of pyramidal neurons and spine morphology in two models: (1) a conditional knockout mouse model which disrupts Ank3 expression in adult forebrain pyramidal neurons, and (2) an AnkG knockdown model in cortical neuron cultures. We observed a decrease in dendrite complexity and a reduction of dendritic spine number in both models, reminiscent of reports in BD. We showed that lithium treatment corrected dendrite and spine deficits in vitro and in vivo. We targeted two signaling pathways known to be affected by lithium using a highly selective GSK3ß inhibitor (CHIR99021) and an adenylate cyclase activator (forskolin). In our cortical neuron culture model, CHIR99021 rescues the spine morphology defects caused by AnkG knockdown, whereas forskolin rescued the dendrite complexity deficit. Interestingly, a synergistic action of both drugs was required to rescue dendrite and spine density defects in AnkG knockdown neurons. Altogether, our results suggest that dendritic abnormalities observed in loss of function ANK3 variants and BD patients may be rescued by lithium treatment. Additionally, drugs selectively targeting GSK3ß and cAMP pathways could be beneficial in BD.


Subject(s)
Cyclic AMP , Lithium , Mice , Adult , Animals , Humans , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta , Colforsin/pharmacology , Signal Transduction , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Mice, Knockout , Ankyrins/genetics , Ankyrins/pharmacology
3.
Mol Psychiatry ; 25(9): 2000-2016, 2020 09.
Article in English | MEDLINE | ID: mdl-30967682

ABSTRACT

Postsynaptic trafficking plays a key role in regulating synapse structure and function. While spiny excitatory synapses can be stable throughout adult life, their morphology and function is impaired in Alzheimer's disease (AD). However, little is known about how AD risk genes impact synaptic function. Here we used structured superresolution illumination microscopy (SIM) to study the late-onset Alzheimer's disease (LOAD) risk factor BIN1, and show that this protein is abundant in postsynaptic compartments, including spines. While postsynaptic Bin1 shows colocalization with clathrin, a major endocytic protein, it also colocalizes with the small GTPases Rab11 and Arf6, components of the exocytic pathway. Bin1 participates in protein complexes with Arf6 and GluA1, and manipulations of Bin1 lead to changes in spine morphology, AMPA receptor surface expression and trafficking, and AMPA receptor-mediated synaptic transmission. Our data provide new insights into the mesoscale architecture of postsynaptic trafficking compartments and their regulation by a major LOAD risk factor.


Subject(s)
Alzheimer Disease , Adaptor Proteins, Signal Transducing/genetics , Adult , Humans , Nuclear Proteins , Receptors, AMPA/metabolism , Synapses/metabolism , Synaptic Transmission , Tumor Suppressor Proteins
4.
Neurosci Lett ; 701: 92-99, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30779956

ABSTRACT

GABAergic interneurons are emerging as prominent substrates in the pathophysiology of multiple neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and epilepsy. Interneuron excitatory activity is influenced by 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs), which in turn affects excitatory transmission in the central nervous system. Yet how dysregulation of interneuronal AMPARs distinctly contributes to the molecular underpinning of neurobiological disease is drastically underexplored. Contactin-associated protein-like 2 (CNTNAP2) is a neurexin-related adhesion molecule shown to mediate AMPAR subcellular distribution while calcium/calmodulin-dependent serine protein kinase (CASK) is a multi-functional scaffold involved with glutamate receptor trafficking. Mutations in both genes have overlapping disease associations, including autism spectrum disorders, intellectual disability, and epilepsy, thus suggesting converging perturbations of excitatory/inhibitory balance. Our lab has previously shown that CNTNAP2 stabilizes interneuron dendritic arbors through CASK and that CNTNAP2 regulates AMPAR subunit GluA1 trafficking in excitatory neurons. The interaction between these three proteins, however, has not been studied in interneurons. Using biochemical techniques, structured illumination microscopy (SIM) and shRNA technology, we first confirm that these three proteins interact in mouse brain, and then examined relationship between CNTNAP2, CASK and GluA1 in mature interneurons. Using SIM, we ascertain that a large fraction of endogenous CNTNAP2, CASK, and GluA1 molecules collectively colocalize together in a tripartite manner. Finally, individual knockdown of either CNTNAP2 or CASK similarly alter GluA1 levels and localization. These findings offer insight to molecular mechanisms underlying GluA1 regulation in interneurons.


Subject(s)
Guanylate Kinases/deficiency , Guanylate Kinases/metabolism , Interneurons/metabolism , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Receptors, AMPA/metabolism , Animals , Interneurons/cytology , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...