Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Cell Infect Microbiol ; 14: 1419209, 2024.
Article in English | MEDLINE | ID: mdl-38975328

ABSTRACT

As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques , Neospora , Tetrahydrofolate Dehydrogenase , Thymidylate Synthase , Tetrahydrofolate Dehydrogenase/genetics , Neospora/genetics , Thymidylate Synthase/genetics , Animals , Real-Time Polymerase Chain Reaction/methods , Drug Resistance/genetics , Gene Editing/methods , Coccidiosis/parasitology , Multienzyme Complexes
2.
Microorganisms ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543637

ABSTRACT

Endothelial injury, inflammatory infiltrate and fibrosis are the predominant lesions in the testis of bulls with besnoitiosis that may result in sterility. Moreover, fibroblasts, which are key players in fibrosis, are parasite target cells in a Besnoitia besnoiti chronic infection. This study aimed to decipher the molecular basis that underlies a drift toward fibrosis during the disease progression. Transcriptomic analysis was developed at two times post-infection (p.i.), representative of invasion (12 h p.i.) and intracellular proliferation (32 h p.i.), in primary bovine aorta fibroblasts infected with B. besnoiti tachyzoites. Once the enriched host pathways were identified, we studied the expression of selected differentially expressed genes (DEGs) in the scrotal skin of sterile infected bulls. Functional enrichment analyses of DEGs revealed shared hallmarks of cancer and early fibrosis. Biomarkers of inflammation, angiogenesis, cancer, and MAPK signaling stood out at 12 h p.i. At 32 h p.i., again MAPK and cancer pathways were enriched together with the PI3K-AKT pathway related to cell proliferation. Some DEGs were also regulated in the skin samples of naturally infected bulls (PLAUR, TGFß1, FOSB). We have identified potential biomarkers and host pathways regulated during fibrosis that may hold prognostic significance and could emerge as potential therapeutic targets.

3.
Front Vet Sci ; 10: 1249410, 2023.
Article in English | MEDLINE | ID: mdl-37841464

ABSTRACT

The aim of the present systematic review and meta-analysis was to identify the main infectious agents related to bovine abortion worldwide in the period between 2000 and 2022. First, we investigated the global prevalence of infectious agents related to bovine abortion. For this analysis, only 27 articles detected of a wide panel of agents were included. The random effects model revealed that the estimated prevalence of the abortifacient agents in bovine abortion was 45.7%. The heterogeneity among studies was high, but Egger's test showed that there was no publication bias, even though the total number of samples analyzed in these articles was variable. There was no significant effect of the year of the study publication on the estimated prevalence, although an increasing trend was observed over time, possibly due to the implementation of new diagnostic techniques. Then, we analyzed the prevalence of the main transmissible agents in bovine abortion. For this analysis, 76 studies that analyzed 19,070 cases were included. Some infectious agent was detected in 7,319 specimens, and a final diagnosis was reached in 3,977 of these, when both the infectious agent and compatible histopathological changes were detected. We found that Neospora caninum was the most detected agent (22.2%), followed by opportunistic bacteria (21.4%), Chlamydiaceae family (10.9%) and Coxiella burnetii (9.5%). Regarding viral agents, bovine herpes virus type 1 and bovine viral diarrhea displayed similar prevalence rates (approximately 5%). After considering the description of specific histopathological changes, our analyzes showed that N. caninum was a confirmed cause of abortion in 16.7% of the analyzed cases, followed by opportunistic bacteria (12.6%) and Chlamydia spp. (6.8%); however, C. burnetii was only confirmed as a cause of abortion in 1.1% of the cases. For all agents, the heterogeneity among studies was high, and the subgroup analyzes discarded the diagnostic method as the cause of such heterogeneity. This study provides knowledge about the global prevalence of the different infectious agents related to bovine abortion, the most coming of which is N. caninum. In addition, this review reveals the existing deficiencies in the diagnosis of bovine abortion that must be addressed in the future.

4.
Theriogenology ; 212: 157-171, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729817

ABSTRACT

Reproductive failure is one of the main performance constraints in ruminant livestock. Transmissible agents such as Toxoplasma gondii and Neospora caninum are commonly involved in the occurrence of abortion in ruminants, but little is known about the mechanisms involved. While in vivo models are optimal for the study of abortion pathogenesis, they have a high economic cost and come with ethical concerns. Unfortunately, alternative in vitro models fail to replicate the complex in vivo placental structure. To overcome the limitations of currently available models, we developed an ex vivo model based on the cultivation of fresh and cryopreserved sheep placental explants, enabling the biobanking of tissues. Reproducible and simple markers of tissue integrity (histology, RNA concentrations), viability (resazurin reduction), and functionality (synthesis of steroid hormones) were also investigated, allowing a clear quality assessment of the model. This work shows that, similar to fresh explants, tissues cryopreserved in ethylene glycol using slow freezing rates maintain not only their structure and function but also their receptivity to T. gondii and N. caninum infection. In addition, the findings demonstrate that explant lifespan is mainly limited by the culture method, with protocols requiring improvements to extend it beyond 2 days. These findings suggest that cryopreserved tissues can be exploited to study the initial host‒pathogen interactions taking place in the placenta, thus deepening the knowledge of the specific mechanisms that trigger reproductive failure in sheep. Importantly, this work paves the way for the development of similar models in related species and contributes to the reduction of experimental animal use in the future.

5.
Front Immunol ; 14: 1198609, 2023.
Article in English | MEDLINE | ID: mdl-37520552

ABSTRACT

Research on bovine neosporosis has achieved relevant milestones, but the mechanisms underlying the occurrence of foetal death or protection against foetal death remain unclear. In a recent study, placentas from heifers challenged with the high-virulence isolate Nc-Spain7 exhibited focal necrosis and inflammatory infiltrates as soon as 10 days post-infection (dpi), although parasite detection was minimal. These lesions were more frequent at 20 dpi, coinciding with higher rates of parasite detection and the occurrence of foetal death in some animals. In contrast, such lesions were not observed in placentas from animals infected with the low-virulence isolate Nc-Spain1H, where the parasite was detected only in placenta from one animal at 20 dpi. This work aimed to study which mechanisms are triggered in the placentas (caruncles and cotyledons) of these pregnant heifers at early stages of infection (10 and 20 dpi) through whole-transcriptome analysis. In caruncles, infection with the high-virulence isolate provoked a strong proinflammatory response at 10 dpi. This effect was not observed in heifers infected with the low-virulence isolate, where IL-6/JAK/STAT3 signalling and TNF-alpha signalling via NF-κB pathways were down-regulated. Interestingly, the expression of E2F target genes, related to restraining the inflammatory response, was higher in these animals. At 20 dpi, more pronounced proinflammatory gene signatures were detectable in heifers infected with the high-virulence isolate, being more intense in heifers carrying dead fetuses. However, the low-virulence isolate continued without activating the proinflammatory response. In cotyledons, the response to infection with the high-virulence isolate was similar to that observed in caruncles; however, the low-virulence isolate induced mild proinflammatory signals at 20 dpi. Finally, a deconvolutional analysis of gene signatures from both placentome tissues revealed a markedly higher fraction of activated natural killers, M1 macrophages and CD8+ T cells for the high-virulence isolate. Therefore, our transcriptomic analysis supports the hypothesis that an intense immune response probably triggered by parasite multiplication could be a key contributor to abortion. Further studies are required to determine the parasite effectors that govern the distinct interactions of high- and low-virulence isolates with the host, which could help elucidate the molecular processes underlying the pathogenesis of neosporosis in cattle.


Subject(s)
Neospora , Pregnancy , Humans , Cattle , Animals , Female , Virulence , Placenta/pathology , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Fetal Death
6.
Vet Parasitol ; 320: 109973, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356132

ABSTRACT

Bovine neosporosis is one of the major causes of reproductive failure in cattle worldwide, and differences in virulence between isolates have been widely shown. However, the molecular basis and mechanisms underlying virulence in Neospora caninum are mostly unknown. Recently, we demonstrated the involvement of NcGRA7 and NcROP40 in the virulence of N. caninum in a pregnant murine model using single knockout mutants in these genes generated by CRISR/Cas9 technology. In this study, the role of these proteins was investigated in two in vitro models using bovine target cells: trophoblast (F3 cell line) and monocyte-derived macrophages (BoMØ). The proliferation capacity of the single knockout mutant parasites was compared to the wild-type strain, the Nc-Spain7 isolate, using both cell populations. For the bovine trophoblast, no differences were observed in the growth of the defective parasites compared to the wild-type strain, neither in the proliferation kinetics nor in the competition assay. However, in naïve BoMØ, a significant decrease in the proliferation capacity of the mutant parasites was observed from 48 h pi onwards. Stimulation of BoMØ with IFN-γ showed a similar inhibition of tachyzoite growth in defective and wild-type strains in a dose-dependent manner. Finally, BoMØ infected with knockout parasites showed higher expression levels of TLR3, which is involved in pathogen recognition. These results suggest that NcGRA7 and NcROP40 may be involved in the manipulation of innate immune defense mechanisms against neosporosis and confirm the usefulness of the BoMØ model for the evaluation of N. caninum virulence mechanisms. However, the specific functions of these proteins remain unknown, opening the way for future research.


Subject(s)
Coccidiosis , Neospora , Pregnancy , Female , Cattle , Animals , Mice , Virulence Factors/metabolism , Protozoan Proteins/genetics , Macrophages , Virulence , Coccidiosis/parasitology , Coccidiosis/veterinary
7.
Int J Parasitol ; 53(9): 505-521, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37207972

ABSTRACT

Besnoitia besnoiti-infected bulls may develop severe systemic clinical signs and orchitis that may ultimately cause sterility during the acute infection. Macrophages might play a relevant role in pathogenesis of the disease and the immune response raised against B. besnoiti infection. This study aimed to dissect the early interaction between B. besnoiti tachyzoites and primary bovine monocyte-derived macrophages in vitro. First, the B. besnoiti tachyzoite lytic cycle was characterized. Next, dual transcriptomic profiling of B. besnoiti tachyzoites and macrophages was conducted at early infection (4 and 8 h p.i.) by high-throughput RNA sequencing. Macrophages inoculated with heat-killed tachyzoites (MO-hkBb) and non-infected macrophages (MO) were used as controls. Besnoitia besnoiti was able to invade and proliferate in macrophages. Upon infection, macrophage activation was demonstrated by morphological and transcriptomic changes. Infected macrophages were smaller, round and lacked filopodial structures, which might be associated with a migratory phenotype demonstrated in other apicomplexan parasites. The number of differentially expressed genes (DEGs) increased substantially during infection. In B. besnoiti-infected macrophages (MO-Bb), apoptosis and mitogen-activated protein kinase (MAPK) pathways were regulated at 4 h p.i., and apoptosis was confirmed by TUNEL assay. The Herpes simplex virus 1 infection pathway was the only significantly enriched pathway in MO-Bb at 8 h p.i. Relevant DEGs of the Herpes simplex virus 1 infection (IFNα) and the apoptosis pathways (CHOP-2) were also significantly regulated in the testicular parenchyma of naturally infected bulls. Furthermore, the parasite transcriptomic analysis revealed DEGs mainly related to host cell invasion and metabolism. These results provide a deep overview of the earliest macrophage modulation by B. besnoiti that may favour parasite survival and proliferation in a specialized phagocytic immune cell. Putative parasite effectors were also identified.


Subject(s)
Cattle Diseases , Coccidiosis , Parasites , Sarcocystidae , Animals , Cattle , Male , Besnoitia , Coccidiosis/veterinary , Coccidiosis/parasitology , Sarcocystidae/genetics , Cattle Diseases/parasitology , Macrophages , Apoptosis
8.
Pathogens ; 11(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36145430

ABSTRACT

The intraspecific variability among Neospora caninum isolates in their in vitro behaviour and in vivo virulence has been widely studied. In particular, transcriptomic and proteomic analyses have shown a higher expression/abundance of specific genes/proteins in high-virulence isolates. Consequently, the dense granule protein NcGRA7 and the rhoptry protein NcROP40 were proposed as potential virulence factors. The objective of this study was to characterize the role of these proteins using CRISPR/Cas9 knockout (KO) parasites in a well-established pregnant BALB/c mouse model of N. caninum infection at midgestation. The deletion of NcGRA7 and NcROP40 was associated with a reduction of virulence, as infected dams displayed milder clinical signs, lower parasite burdens in the brain, and reduced mortality rates compared to those infected with the wild-type parasite (Nc-Spain7). Specifically, those infected with the NcGRA7 KO parasites displayed significantly milder clinical signs and a lower brain parasite burden. The median survival time of the pups from dams infected with the two KO parasites was significantly increased, but differences in neonatal mortality rates were not detected. Overall, the present study indicates that the disruption of NcGRA7 considerably impairs virulence in mice, while the impact of NcROP40 deletion was more modest. Further research is needed to understand the role of these virulence factors during N. caninum infection.

9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163386

ABSTRACT

Zoonotic visceral leishmaniosis caused by Leishmania infantum is an endemic disease in the Mediterranean Basin affecting mainly humans and dogs, the main reservoir. The leishmaniosis outbreak declared in the Community of Madrid (Spain) led to a significant increase in human disease incidence without enhancing canine leishmaniosis prevalence, suggesting a better adaptation of the outbreak's isolates by other host species. One of the isolates obtained in the focus, IPER/ES/2012/BOS1FL1 (BOS1FL1), has previously demonstrated a different phenotype than the reference strain MCAN/ES/1996/BCN150 (BCN150), characterized by a lower infectivity when interacting with canine macrophages. Nevertheless, not enough changes in the cell defensive response were found to support their different behavior. Thus, we decided to investigate the molecular mechanisms involved in the interaction of both parasites with DH82 canine macrophages by studying their transcriptomic profiles developed after infection using RNA sequencing. The results showed a common regulation induced by both parasites in the phosphoinositide-3-kinase-protein kinase B/Akt and NOD-like receptor signaling pathways. However, other pathways, such as phagocytosis and signal transduction, including tumor necrosis factor, mitogen-activated kinases and nuclear factor-κB, were only regulated after infection with BOS1FL1. These differences could contribute to the reduced infection ability of the outbreak isolates in canine cells. Our results open a new avenue to investigate the true role of adaptation of L. infantum isolates in their interaction with their different hosts.


Subject(s)
Dogs/genetics , Dogs/parasitology , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/veterinary , Life Cycle Stages/physiology , Macrophages/parasitology , Transcriptome/genetics , Animals , Cell Line , Gene Expression Regulation , Gene Ontology , Leishmania infantum/growth & development , Leishmaniasis, Visceral/parasitology , Macrophages/metabolism , NLR Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Virulence
10.
Front Vet Sci ; 8: 750183, 2021.
Article in English | MEDLINE | ID: mdl-34957276

ABSTRACT

Bovine genital campylobacteriosis (BGC) is a sexually transmitted disease that causes early reproductive failure in natural breeding cattle that are managed extensively. The aim of this study was to assess the BGC prevalence in Spain from 2011 to 2019 using data collected cross-sectionally from the diagnostic reports issued by the SALUVET veterinary diagnostic laboratory from a total of 5,182 breeding bulls from 1,950 herds managed under "dehesa" systems (large herds within fenced pastures and all-year breeding season) or mountain systems (smaller herds with seasonal breeding management and grazing in communal mountain pastures). Infection was detected by PCR in 7.7 and 12.2% of the bulls and herds tested, respectively. The "dehesa" herd management system (OR = 2.078, P = < 0.001, 95% CI = 1.55-1.77), bovine trichomonosis status of the herd (OR = 1.606, P = 0.004, 95% CI = 1.15-2.22), and bulls ≥3 years old (OR = 1.392, P = 0.04, 95% CI = 1.01-1.92) were identified as risk factors associated with Campylobacter fetus venerealis infection. We also studied the high-risk areas for circulation of the infection in extensive beef cattle herds in Spain, showing four significant clusters in "dehesa" areas in the south-western provinces of the country and a fifth cluster located in a mountain area in northern Spain. The results obtained in the present study indicate that BGC is endemic and widely distributed in Spanish beef herds. Specifically, "dehesa" herds are at greater risk for introduction of Cfv based on relatively high local prevalence of the infection and the use of specific management practices.

11.
Front Cell Infect Microbiol ; 11: 684670, 2021.
Article in English | MEDLINE | ID: mdl-34239816

ABSTRACT

Bovine neosporosis is currently considered one of the main causes of abortion in cattle worldwide and the outcome of the infection is, in part, determined by Neospora caninum isolate virulence. However, the dam and foetal immune responses associated with this factor are largely unknown. We used a model of bovine infection at day 110 of gestation to study the early infection dynamics (10- and 20-days post-infection, dpi) after experimental challenge with high- and low-virulence isolates of N. caninum (Nc-Spain7 and Nc-Spain1H, respectively). In the present work, dam peripheral cellular immune responses were monitored twice a week from -1 to 20 dpi. At different time points, IFN-γ and IL-4 production was investigated in stimulated dam blood and the percentage of monocytes, NK cells, B cells and T cells (CD4+, CD8+ and γδ) in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry. In addition, maternal iliofemoral lymph nodes and foetal spleen and thymus were collected at 10 and 20 dpi for the study of the same cell subpopulations. Peripheral immune response dynamics were similar after the infection with both isolates, with a significant increase in the percentage of CD4+ T cells at 6 and 9 dpi in PBMC, coincident with the higher levels of IFN-γ and IL-4 release. However, the levels of IFN-γ were significantly higher and an increase in CD8+ T cells at 9, 13 and 20 dpi was observed in the dams infected with Nc-Spain7. Nc-Spain1H infection induced higher IL4 levels in stimulated blood and a higher CD4+/CD8+ ratio in PBMC. The analysis of the maternal iliofemoral lymph node showed a significant enhancement in the percentage of NK, CD4+ and CD8+ T cells for the animals infected with the highly virulent isolate and euthanized at 20 dpi. Regarding the foetal responses, the most remarkable result was an increase in the percentage of monocytes at 20 dpi in the spleen of foetuses from both infected groups, which suggests that foetuses were able to respond to N. caninum infection at mid gestation. This work provides insights into how isolate virulence affects the maternal and foetal immune responses generated against N. caninum, which may influence the course of infection.


Subject(s)
Cattle Diseases , Coccidiosis , Neospora , Animals , Cattle , Coccidiosis/veterinary , Female , Fetus , Immunity, Cellular , Leukocytes, Mononuclear , Pregnancy , Virulence
12.
PLoS Pathog ; 17(5): e1009606, 2021 05.
Article in English | MEDLINE | ID: mdl-34015034

ABSTRACT

The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel's disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel.


Subject(s)
Genome, Bacterial/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus/genetics , Animals , Biological Evolution , Ecosystem , Genomics , Humans , Livestock , Phylogeny , Transcriptome , Whole Genome Sequencing
13.
Pathogens ; 9(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942559

ABSTRACT

Despite the importance of bovine neosporosis, relevant knowledge gaps remain concerning the pathogenic mechanisms of Neospora caninum. Infection of the placenta is a crucial event in the pathogenesis of the disease; however, very little is known about the relation of the parasite with this target organ. Recent studies have shown that isolates with important variations in virulence also show different interactions with the bovine trophoblast cell line F3 in terms of proliferative capacity and transcriptome host cell modulation. Herein, we used the same model of infection to study the interaction of Neospora with these target cells at the proteomic level using LC-MS/MS over the course of the parasite lytic cycle. We also analysed the proteome differences between high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates. The results showed that mitochondrial processes and metabolism were the main points of Neospora-host interactions. Interestingly, Nc-Spain1H infection showed a higher level of influence on the host cell proteome than Nc-Spain7 infection.

14.
Parasit Vectors ; 13(1): 374, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711550

ABSTRACT

BACKGROUND: Neospora caninum is an obligate intracellular parasite, and its ability to survive inside host immune cells may be a key mechanism for the establishment of infection in cattle. In vitro studies carried out by our group have shown that N. caninum is able to replicate in bovine macrophages (MØs), alter their microbicidal mechanisms and exploit their motility. Furthermore, host-cell control seems to be isolate virulence-dependent. METHODS: To investigate the molecular basis underlying the innate responses in MØs against N. caninum and the mechanisms of parasite manipulation of the host cell environment, the transcriptome profile of bovine monocyte-derived MØs infected with high-virulence (Nc-Spain7) or low-virulence (Nc-Spain1H) N. caninum isolates was studied. RESULTS: Functional enrichment revealed upregulation of genes involved in chemokine signalling, inflammation, cell survival, and inhibition of genes related with metabolism and phagolysosome formation. MØs activation was characterized by the induction of a predominantly M1 phenotype with expression of TLR2, TLR3 and TLR9 and activation of the NF-ƙB signalling pathway. Heat-killed N. caninum tachyzoites failed to activate NF-ƙB, and to inhibit lysosomal activity and apoptosis, which indicates active modulation by the parasite. The FoxO signalling pathway, Th1-Th2 differentiation, glycosaminoglycan degradation and apoptosis were pathways enriched only for low virulent Nc-Spain1H infection. In addition, Nc-Spain1H infection upregulated the IL12A and IL8 pro-inflammatory cytokines, whereas IL23 was downregulated by high virulent Nc-Spain7. CONCLUSIONS: This study revealed mechanisms implicated in the recognition of N. caninum by bovine MØs and in the development of the subsequent immune response. NF-ƙB seems to be the main signalling pathway implicated in the pro-inflammatory bovine MØs response against this pathogen. Apoptosis and phagolysosome maturation are processes repressed by N. caninum infection, which may guarantee its intracellular survival. The results also indicate that Nc-Spain7 may be able to partially circumvent the pro-inflammatory response whereas Nc-Spain1H induces a protective response to infection, which may explain the more efficient transmission of the high-virulence Nc-Spain7 isolate observed in vivo.


Subject(s)
Inflammation/metabolism , Macrophages/parasitology , Neospora , Transcriptome , Virulence/genetics , Animals , Cattle , Cattle Diseases/parasitology , Cytokines/metabolism , Immunity, Innate/physiology , Inflammation/genetics , Macrophages/metabolism , Microarray Analysis/methods , NF-kappa B/metabolism , Neospora/immunology , Neospora/pathogenicity , Toll-Like Receptors/metabolism
15.
Vet Res ; 51(1): 83, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32552750

ABSTRACT

Neospora caninum is an apicomplexan cyst-forming parasite that is considered one of the main causes of abortion. The pathogenic mechanisms associated with parasite virulence at the maternal-foetal interface that are responsible for the outcome of infection are largely unknown. Here, utilizing placentomes from cattle experimentally infected with high-virulence (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates, we studied key elements of the innate and adaptive immune responses, as well as components of the extracellular matrix (ECM), at 10 and 20 days post-infection (dpi). The low-virulence isolate elicited a robust immune response characterized by upregulation of genes involved in pathogen recognition, chemokines and pro-inflammatory cytokines, crucial for its adequate control. In addition, Nc-Spain1H triggered the expression of anti-inflammatory cytokines and other mechanisms implicated in the maintenance of ECM integrity to ensure foetal survival. In contrast, local immune responses were initially (10 dpi) impaired by Nc-Spain7, allowing parasite multiplication. Subsequently (20 dpi), a predominantly pro-inflammatory Th1-based response and an increase in leucocyte infiltration were observed. Moreover, Nc-Spain7-infected placentomes from animals carrying non-viable foetuses exhibited higher expression of the IL-8, TNF-α, iNOS and SERP-1 genes and lower expression of the metalloproteases and their inhibitors than Nc-Spain7-infected placentomes from animals carrying viable foetuses. In addition, profound placental damage characterized by an alteration in the ECM organization in necrotic foci, which could contribute to foetal death, was found. Two different host-parasite interaction patterns were observed at the bovine placenta as representative examples of different evolutionary strategies used by this parasite for transmission to offspring.


Subject(s)
Adaptive Immunity , Cattle Diseases/immunology , Coccidiosis/veterinary , Extracellular Matrix/immunology , Host-Parasite Interactions , Immunity, Innate , Neospora/physiology , Animals , Cattle , Coccidiosis/immunology , Female , Placenta/immunology , Pregnancy
16.
Int J Parasitol ; 50(5): 377-388, 2020 05.
Article in English | MEDLINE | ID: mdl-32360428

ABSTRACT

The biological variability among Neospora caninum isolates has been widely shown, however, the molecular basis that determines this diversity has not been thoroughly elucidated to date. The latest studies have focused on a limited number of isolates. Therefore, the goal of the present study was to compare the proteome of a larger number of N. caninum isolates with different origins and virulence. Label-free LC-MS/MS was used to investigate the tachyzoite proteomic differences among Nc-Bahia, Nc-Spain4H and Nc-Spain7, representing high virulence isolates and Nc-Ger6, Nc-Spain2H and Nc-Spain1H, representing low virulence isolates. Pairwise comparisons between all isolates and between high virulence and low virulence groups identified a subset of proteins with higher abundance in high virulence isolates. These proteins were involved in energy and redox metabolism, and DNA/RNA processing, which might determine the faster growth rates and parasite survival of the high virulence isolates. Highlighted proteins included a predicted member of the rhoptry kinase family ROP20 specific for N. caninum, Bradyzoite pseudokinase 1 and several dense granule proteins. DNA polymerase, which was more abundant in all high virulence isolates in all comparisons, might also be implicated in virulence. These results reveal insights into possible mechanisms involved in specific phenotypic traits and virulence in N. caninum, and the relevance of these candidate proteins for N. caninum virulence deserves further investigation.


Subject(s)
Neospora/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Virulence , Chromatography, Liquid , Energy Metabolism , Life Cycle Stages , Nucleic Acids/metabolism , Phenotype , Proteomics/methods , Tandem Mass Spectrometry
17.
Parasitol Res ; 119(4): 1353-1362, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32157394

ABSTRACT

Recent studies have revealed extensive genetic variations among Neospora caninum, a cyst-forming protozoan parasite that is one of the main causes of bovine abortion in the cattle industry worldwide. Previous genetic studies based on multilocus microsatellite genotyping (MLGs) of different Ibero-American populations showed a high genetic diversity. These studies provided clear clues of a predominant clonal propagation in cattle and population sub-structuring partially associated with geographical origin. Although, these reports were limited to a reduced number of countries. In this study, the N. caninum isolates from aborted bovine fetuses and stillbirths and a goat abortion from Northern Italy were investigated genetically using 9 microsatellite markers. Complete or nearly complete isolate profiles were obtained from 30 fetuses and stillbirths. An extensive genetic diversity was also found in this Italian N. caninum population. The study of genetic relationships among Italian MLGs using network (eBURST) and principal component analyses based on the allele-sharing coefficient (PCoA) showed different clonal subpopulations disseminated throughout Northern Italy without apparent segregation depending on the geographic origin, cattle breed, or time of collection. The presence of linkage disequilibrium supports a predominant clonal propagation of Italian N. caninum. In addition, most of Italian MLGs segregated from other global populations including Spain, Argentina, Mexico, Brazil, Germany, and Scotland, suggesting the existence of specific N. caninum subpopulations in the Northern Italy and different subpopulations of N. caninum circulating in Europe.


Subject(s)
Abortion, Veterinary/parasitology , Cattle Diseases/parasitology , Coccidiosis/veterinary , Neospora/genetics , Aborted Fetus/parasitology , Animals , Cattle , Female , Fetus/parasitology , Genetic Variation/genetics , Geography , Goats/genetics , Italy , Linkage Disequilibrium/genetics , Microsatellite Repeats/genetics , Neospora/classification , Neospora/isolation & purification , Pregnancy
18.
Front Vet Sci ; 7: 634458, 2020.
Article in English | MEDLINE | ID: mdl-33553293

ABSTRACT

Neospora caninum and Toxoplasma gondii are one of the main concerns of the livestock sector as they cause important economic losses in ruminants due to the reproductive failure. It is well-known that the interaction of these parasites with the placenta determines the course of infection, leading to fetal death or parasite transmission to the offspring. However, to advance the development of effective vaccines and treatments, there are still important gaps on knowledge on the placental host-parasite interactions that need to be addressed. Ruminant animal models are still an indispensable tool for providing a global view of the pathogenesis, lesions, and immune responses, but their utilization embraces important economic and ethics restrictions. Alternative in vitro systems based on caruncular and trophoblast cells, the key cellular components of placentomes, have emerged in the last years, but their use can only offer a partial view of the processes triggered after infection as they cannot mimic the complex placental architecture and neglect the activity of resident immune cells. These drawbacks could be solved using placental explants, broadly employed in human medicine, and able to preserve its cellular architecture and function. Despite the availability of such materials is constrained by their short shelf-life, the development of adequate cryopreservation protocols could expand their use for research purposes. Herein, we review and discuss existing (and potential) in vivo, in vitro, and ex vivo ruminant placental models that have proven useful to unravel the pathogenic mechanisms and the host immune responses responsible for fetal death (or protection) caused by neosporosis and toxoplasmosis.

19.
Article in English | MEDLINE | ID: mdl-31681630

ABSTRACT

Intraspecific differences in biological traits between Neospora caninum isolates have been widely described and associated with variations in virulence. However, the molecular basis underlying these differences has been poorly studied. We demonstrated previously that Nc-Spain7 and Nc-Spain1H, high- and low-virulence isolates, respectively, show different invasion, proliferation and survival capabilities in bovine macrophages (boMØs), a key cell in the immune response against Neospora, and modulate the cell immune response in different ways. Here, we demonstrate that these differences are related to specific tachyzoite gene expression profiles. Specifically, the low-virulence Nc-Spain1H isolate showed enhanced expression of genes encoding for surface antigens and genes related to the bradyzoite stage. Among the primary up-regulated genes in Nc-Spain7, genes involved in parasite growth and redox homeostasis are particularly noteworthy because of their correlation with the enhanced proliferation and survival rates of Nc-Spain7 in boMØs relative to Nc-Spain1H. Genes potentially implicated in induction of proinflammatory immune responses were found to be up-regulated in the low-virulence isolate, whereas the high-virulence isolate showed enhanced expression of genes that may be involved in immune evasion. These results represent a further step in understanding the parasite effector molecules that may be associated to virulence and thus to disease traits as abortion and transmission.


Subject(s)
Cattle Diseases/parasitology , Coccidiosis/veterinary , Host-Parasite Interactions , Macrophages/parasitology , Neospora/genetics , Transcriptome , Animals , Cattle , Cattle Diseases/immunology , Computational Biology/methods , Gene Expression Profiling , Macrophages/immunology
20.
Vet Res ; 50(1): 81, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31610805

ABSTRACT

In the original publication of this article [1], there are error in the Fig. 5, the "ml" should be replaced by "mL" (Fig. 5A) and "IFNγ" should be "IFN-γ" in Fig. 5A, B. The correct figure is below.

SELECTION OF CITATIONS
SEARCH DETAIL
...