Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Eng Technol ; 15(2): 147-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110762

ABSTRACT

PURPOSE: For pediatric patients, extracorporeal membrane oxygenation (ECMO) remains the predominant mechanical circulatory support (MCS) modality for heart failure (HF) although survival to discharge rates remain between 50 and 60% for these patients. The device-blood interface and disruption of physiologic hemodynamics are significant contributors to poor outcomes. METHODS: In this study, we evaluate the preclinical feasibility of a minimally invasive, non-blood-contacting pediatric DCC prototype for temporary MCS. Proof-of-concept is demonstrated in vivo in an animal model of HF. Hemodynamic pressures and flows were examined. RESULTS: Minimally invasive deployment on the beating heart was successful without cardiopulmonary bypass or anticoagulation. During HF, device operation resulted in an immediate 43% increase in cardiac output while maintaining pulsatile hemodynamics. Compared to the pre-HF baseline, the device recovered up to 95% of ventricular stroke volume. At the conclusion of the study, the device was easily removed from the beating heart. CONCLUSIONS: This preclinical proof-of-concept study demonstrated the feasibility of a DCC device on a pediatric scale that is minimally invasive and non-blood contacting, with promising hemodynamic support and durability for the initial intended duration of use. The ability of DCC to maintain pulsatile MCS without blood contact represents an opportunity to mitigate the mortality and morbidity observed in non-pulsatile, blood-contacting MCS.


Subject(s)
Disease Models, Animal , Feasibility Studies , Heart Failure , Heart-Assist Devices , Proof of Concept Study , Animals , Heart Failure/physiopathology , Heart Failure/therapy , Hemodynamics , Ventricular Function, Left , Time Factors , Equipment Design , Recovery of Function
2.
Ann Thorac Surg ; 114(5): 1944-1950, 2022 11.
Article in English | MEDLINE | ID: mdl-35921854

ABSTRACT

PURPOSE: We examined the hemodynamic effects of a new, implantable, direct cardiac assist device in an ovine heart failure model. DESCRIPTION: The device, which encompasses both left and right ventricles, is inserted through the pericardial apex and self-expands to encompass the heart without suturing. The intact pericardium anchors the device in place. The device has 2 concentric chamber layers: an internal chamber layer filled with fluid to conform to the heart and an external chamber layer filled with air that provides external compression and negative pressure to aid relaxation. EVALUATION: The device was implanted in 7 sheep with heart failure induced by microsphere embolization. Cardiac performance was assessed for 6 to 8 hours. The cardiac assist device provided cardiac systolic and diastolic assistance, as shown by pressure tracings of the left ventricle and aorta, pulmonary artery flow, and +dP/dt. Central venous pressure decreased during cardiac assistance. No anatomic damage was noted postmortem. CONCLUSIONS: Systolic and diastolic cardiac assistance can be achieved with this device that compresses and relaxes in synchrony with the native cardiac cycle.


Subject(s)
Heart Failure , Heart-Assist Devices , Animals , Sheep , Diastole , Heart Ventricles , Hemodynamics , Heart Failure/surgery , Central Venous Pressure
3.
J Cardiovasc Transl Res ; 12(2): 155-163, 2019 04.
Article in English | MEDLINE | ID: mdl-30604307

ABSTRACT

While the number of patients supported with temporary cardiac assist is growing, the existing devices are limited by a multitude of complications, mostly related to contact with the blood. The CorInnova epicardial compressive heart assist device was tested in six sheep using an acute heart failure model. High esmolol dose, targeting a 50% reduction in CO from healthy baseline, resulted in a failure state with mean CO 1.9 L/min. Heart assist with the device during failure state resulted in an average absolute increase in CO of 1.0 L/min, along with a decline in ventricular work to 67.5% of the total LV SW. Combined with repeated success of minimally invasive device implant, the resulting increases in cardiac hemodynamics achieved while still unloading the heart demonstrate the potential of the CorInnova device for temporary heart assist.


Subject(s)
Heart Failure/therapy , Heart-Assist Devices , Hemodynamics , Prosthesis Implantation/instrumentation , Ventricular Function, Left , Animals , Disease Models, Animal , Heart Failure/diagnosis , Heart Failure/physiopathology , Materials Testing , Prosthesis Design , Recovery of Function , Sheep, Domestic
SELECTION OF CITATIONS
SEARCH DETAIL
...