Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2403691, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884160

ABSTRACT

Quantum technologic and spintronic applications require reliable material platforms that enable significant and long-living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement. Here it is demonstrated that these conditions are met in bulk crystals of lead halide perovskites. A giant optical orientation of 85% of excitons, approaching the ultimate limit of unity, in FA0.9Cs0.1PbI2.8Br0.2 crystals is reported. The exciton spin orientation is maintained during the exciton lifetime of 55 ps resulting in high circular polarization of the exciton emission. The optical orientation is robust to detuning of the excitation energy up to 0.3 eV above the exciton resonance and remains larger than 20% up to detunings of 0.9 eV. It evidences pure chiral selection rules and suppressed spin relaxation of electrons and holes, even with large kinetic energies. The exciton and electron-hole recombinations are distinguished by means of the spin dynamics detected via coherent spin quantum beats in magnetic field. Further, electron-hole spin correlations are demonstrated through linear polarization beats after circularly polarized excitation. These findings are supported by atomistic calculations. All-in-all, the results establish lead halide perovskite semiconductors as suitable platform for quantum technologies.

2.
J Phys Chem Lett ; 15(10): 2893-2903, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38448798

ABSTRACT

Coherent spin dynamics of electrons and holes are studied in hybrid organic-inorganic lead halide perovskite FAPbBr3 bulk single crystals using the time-resolved Kerr ellipticity technique at cryogenic temperatures. The Larmor spin precession of the carrier spins in a magnetic field is monitored to measure the Landé g-factors of electrons (+2.44) and holes (+0.41). These g-factors are highly isotropic. The measured spin dephasing times amount to a few nanoseconds, and the longitudinal hole spin relaxation time is 470 ns. The important role of the strong hyperfine interaction between carrier spins and nuclear spins is demonstrated via dynamic nuclear polarization. At low temperatures, electron and hole spin relaxation predominantly occurs via the hyperfine interaction, whose importance significantly decreases at temperatures above 12 K. We overview the spin dynamics in various lead halide perovskite crystals and polycrystalline films and conclude on their common features provided by charge carrier localization at cryogenic temperatures.

3.
Small ; 20(16): e2300935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009504

ABSTRACT

The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.

4.
Nano Lett ; 23(16): 7397-7403, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37548595

ABSTRACT

Compositional engineering of the optical properties of hybrid organic-inorganic lead halide perovskites is crucial for the realization of efficient solar cells and light-emitting devices. We study the effect of band gap fluctuations on coherent exciton dynamics in a mixed FA0.9Cs0.1PbI2.8Br0.2 perovskite crystal by using photon echo spectroscopy. We reveal a narrow homogeneous exciton line width of 16 µeV at a temperature of 1.5 K. The corresponding exciton coherence time T2 = 83 ps is exceptionally long due to the localization of excitons at the scale of tens to hundreds of nanometers. From spectral and temperature dependences of the two- and three-pulse photon echo decay, we conclude that for low-energy excitons pure decoherence associated with elastic scattering on phonons is comparable with the exciton lifetime, while for excitons with higher energies, inelastic scattering to lower energy states via phonon emission dominates.

5.
Small ; 19(32): e2300988, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066731

ABSTRACT

The class of Ruddlesden-Popper type (PEA)2 PbI4 perovskites comprises 2D structures whose optical properties are determined by excitons with a large binding energy of about 260 meV. It complements the family of other 2D semiconductor materials by having the band structure typical for lead halide perovskites, that can be considered as inverted compared to conventional III-V and II-VI semiconductors. Accordingly, novel spin phenomena can be expected for them. Spin-flip Raman scattering is used here to measure the Zeeman splitting of electrons and holes in a magnetic field up to 10 T. From the recorded data, the electron and hole Landé factors (g-factors) are evaluated, their signs are determined, and their anisotropies are measured. The electron g-factor value changes from +2.11 out-of-plane to +2.50 in-plane, while the hole g-factor ranges between -0.13 and -0.51. The spin flips of the resident carriers are arranged via their interaction with photogenerated excitons. Also the double spin-flip process, where a resident electron and a resident hole interact with the same exciton, is observed showing a cumulative Raman shift. Dynamic nuclear spin polarization induced by spin-polarized holes is detected in corresponding changes of the hole Zeeman splitting. An Overhauser field of the polarized nuclei acting on the holes as large as 0.6 T can be achieved.

6.
Nano Lett ; 23(1): 205-212, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36574606

ABSTRACT

The versatile potential of lead halide perovskites and two-dimensional materials is merged in the Ruddlesden-Popper perovskites having outstanding optical properties. Here, the coherent spin dynamics in Ruddlesden-Popper (PEA)2PbI4 perovskites is investigated by picosecond pump-probe Kerr rotation in an external magnetic field. The Larmor spin precession of resident electrons with a spin dephasing time of 190 ps is identified. The longitudinal spin relaxation time in weak magnetic fields measured by the spin inertia method is as long as 25 µs. A significant anisotropy of the electron g-factor with the in-plane value of +2.45 and out-of-plane value of +2.05 is found. The exciton out-of-plane g-factor of +1.6 is measured by magneto-reflectivity. This work contributes to the understanding of the spin-dependent properties of two-dimensional perovskites and their spin dynamics.

7.
ACS Appl Mater Interfaces ; 14(30): 34253-34261, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35512221

ABSTRACT

Given their comparatively narrow band gap, mixed Pb-Sn iodide perovskites are interesting candidates for bottom cells in all-perovskite tandems or single junction solar cells, and their luminescence around 900 nm offers great potential for near-infrared optoelectronics. Here, we investigate mixed FAPb1-xSnxI3 offering the first accurate determination of the crystal structure over a temperature range from 293 to 100 K. We demonstrate that all compositions exhibit a cubic structure at room temperature and undergo at least two transitions to lower symmetry tetragonal phases upon cooling. Using density functional theory (DFT) calculations based on these structures, we subsequently reveal that the main impact on the band gap bowing is the different energy of the s and p orbital levels derived from Pb and Sn. In addition, this energy mismatch results in strongly composition-dependent luminescence characteristics. Whereas neat and Sn-rich compounds exhibit bright and narrow emission with a clean band gap, Sn-poor compounds intrinsically suffer from increased carrier recombination mediated by in-gap states, as evidenced by the appearance of pronounced low-energy photoluminescence upon cooling. This study is the first to link experimentally determined structures of FAPb1-xSnxI3 with the electronic properties, and we demonstrate that optoelectronic applications based on Pb-Sn iodide compounds should employ Sn-rich compositions.

SELECTION OF CITATIONS
SEARCH DETAIL
...