Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neurochir (Wien) ; 162(10): 2421-2430, 2020 10.
Article in English | MEDLINE | ID: mdl-32779025

ABSTRACT

OBJECTIVE: Adjustable differential pressure (DP) valves in combination with fixed anti-siphon devices are currently a popular combination in counteracting the effects of cerebrospinal fluid overdrainage following implantation of a ventriculoperitoneal shunt system. The study examined the flow performance of three DP valves in successive combination with an anti-siphon device in an in vitro shunt laboratory with and without vertical motion. METHODS: We analyzed three DP valves (Codman Hakim Medos programmable valve [HM], Codman CertasPlus [CP], and Miethke proGAV [PG], in combination with either Codman SiphonGuard [SG] or Miethke ShuntAssistant [SA]), resulting in the evaluation of six different valve combinations. Defined DP conditions between 4 and 40 cm H2O within a simulated shunt system were generated and the specific flow characteristics were measured. In addition, combinations with SA, which is a gravity-dependent valve, were measured in defined spatial positions (90°, 60°). All device combinations were tested during vertical motion with movement frequencies of 2, 3, and 4 Hz. RESULTS: All valve combinations effectively counteracted the siphon effect in relation to the chosen DP. Angulation-related flow changes were similar in the three combinations of DP valve and SA in the 60° and 90° position. In CP-SA and PG-SA, repeated vertical movement at 2, 3, and 4 Hz led to significant increase in flow, whereas in HM-SA, constant increase was seen at 4 Hz only (flow change at 4Hz, DP 40 cm H2O: PG (opening pressure 4 cm H2O) 90°: 0.95 ml/min, 60°: 0.71 ml/min; HM (opening pressure 4 cm H2O) 90°: 0.66 ml/min, 60°: 0.41 ml/min; CP (PL 2) 90°: 0.94 ml/min, 60°: 0.79 ml/min; p < 0.01); however, HM-SA showed relevant motion-induced flow already at low DPs (0.85 ml/min, DP 4 cm H2O). In combinations of DP valve with SG, increase of flow was far less pronounced and even led to significant reduction of flow in certain constellations. Maximum overall flow increase was 0.46 ± 0.04 ml/min with a HM (opening pressure 12 cm H2O) at 2 Hz and a DP of 10 cm H2O, whereas maximum flow decrease was 1.12 ± 0.08 with a PG (opening pressure 4 cm H2O) at 3 Hz and a DP of 10 cmH2O. CONCLUSION: In an experimental setup, all valve combinations effectively counteracted the siphon effect in the vertical position according to their added resistance. Motion-induced increased flow was consistently demonstrated in combinations of DP valve and SA. The combination of HM and SA especially showed relevant motion-induced flow already at low DPs. In combinations of DP and SG, the pattern of the motion induced flow was more inconsistent and motion even led to significant flow reduction, predominantly at DPs of 10 and 20 cmH2O.


Subject(s)
Hydrocephalus/surgery , Ventriculoperitoneal Shunt/instrumentation , Gravitation , Humans , Motion , Prostheses and Implants/adverse effects , Prostheses and Implants/standards
2.
Acta Neurochir (Wien) ; 162(5): 1033-1040, 2020 05.
Article in English | MEDLINE | ID: mdl-31997071

ABSTRACT

BACKGROUND: Programmable differential pressure (DP) valves combined with an anti-siphon device (ASD) represent the current standard of care in preemtping overdrainage associated with ventriculoperitoneal shunting for hydrocephalus. OBJECTIVE: We aimed to provide comparative data of four combinations of two ASDs of different working principles in combination with two DP valves in an in vitro model in order to achieve a better understanding of the flow characteristics and potential clinical application. METHODS: We analyzed the flow performance of four possible combinations of two DP valves (CHPV [HM]; proGAV 2.0[PG]) in combination with either a gravity-regulated (Shuntassistant [SA]) or a flow-regulated (SiphonGuard [SG]) ASD in an in vitro setup. A DP between 4 and 60 cmH2O was generated, and the specific flow characteristics were measured. In addition, the two combinations with gravity-regulated ASDs were measured in defined spatial positions. RESULTS: Flow characteristics of the SA combinations corresponded to the DP in linear fashion and to the spatial position. Flow characteristics of the SG combinations were dependent upon the DP in a non-linear fashion and independent of the spatial position. Highest mean flow rate of the PG-SG- (HM-SG-) combination was 1.41 ± 0.24 ml/min (1.16 ± 0.06 ml/min). The mean flow rates sharply decreased with increasing inflow pressure and subsequently increased slowly up to 0.82 ± 0.26 ml/min (0.77 ± 0.08 ml/min). CONCLUSION: All tested device combinations were able to control hydrostatic effect and prevent consecutive excessive flow, to varying degrees. However, significant differences in flow characteristics can be seen, which might be relevant for their clinical application.


Subject(s)
Cerebrospinal Fluid Shunts/instrumentation , Equipment Design , Hydrocephalus/surgery , Materials Testing , Cerebrospinal Fluid Shunts/adverse effects , Gravitation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...