Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Immunoassay Immunochem ; 41(6): 1033-1043, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33021886

ABSTRACT

BACKGROUND: Prior to 2000, the DNA alkylating agents nitrosoureas were used as standard treatment of glioblastoma. Current treatments for glioblastoma patients consist of surgery followed by radiation in combination with temozolomide. Despite therapeutic advances, the prognosis for glioblastoma patients remains grim, with a five-year overall survival below 15%. In this study, our team analyzed the interaction between temozolomide and doxorubicin in a glioblastoma cell line, in vitro. MATERIALS AND METHOD: The cell line, established from a patient who underwent surgery at the "Bagdasar Arseni Emergency Hospital", was exposed to 10 µM and 100 µM of temozolomide and 10 nM and 100 nM of doxorubicin, respectively, over a period of 7, 10 and 14 days, in monotherapy and in combination. RESULTS: The results showed that both temozolomide (66.5% cytotoxicity for the 10 µM dose at 14 days) de and doxorubicin (66.8% cytotoxicity for the 10 nM dose after 14 days) were very effective in killing cancer cells in monotherapy, but failed to produce a synergistic effect when used in combination. CONCLUSION: While the results may be discouraging, they present an interesting prospect into how certain drug interactions can impact treatment response.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Glioblastoma/drug therapy , Temozolomide/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Drug Therapy, Combination , Glioblastoma/pathology , Humans , Structure-Activity Relationship , Tumor Cells, Cultured
2.
J Immunoassay Immunochem ; 41(6): 1021-1032, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32807003

ABSTRACT

The best known functions of ß-arrestins (ß-arr) are to regulate G protein-coupled receptors (GPCR) signaling through receptor desensitization and internalization. Many reports also suggest that ß-arrs play important role in immune regulation and inflammatory responses, under physiological and pathological conditions. Recent studies have shown that ß-arr 1 silencing halts proliferation and increases temozolomide (TMZ) response in glioblastoma (GBM) cells. The focus of this paper is to analyze the role of ß-arr 1 overexpression in the 18 high grade glioma (HGG) cell line in terms of viability and their response to TMZ treatment. For this reason, the cell line was transfected with ß-arr 1 and the effect was analyzed after 24 h, 48 h and 72 h in terms of proliferation and treatment response. We observed that ß-arr 1 overexpression induced a time and dose dependant inhibition in the HGG cells. Unexpectedly, ß-arr transfection resulted in a very mild increase in TMZ toxicity after 24 h, becoming non-statistically significant at 72 h. In conclusion, we showed that ß-arr 1 overexpression inhibits cell proliferation in the 18 cell line but only has a very modest effect on treatment response with the alkylating agent TMZ.


Subject(s)
Cell Death/genetics , Glioma/therapy , Transfection , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioma/metabolism , Glioma/pathology , Humans , Structure-Activity Relationship , Temozolomide/pharmacology , Tumor Cells, Cultured
3.
Contemp Oncol (Pozn) ; 24(1): 55-66, 2020.
Article in English | MEDLINE | ID: mdl-32514239

ABSTRACT

From all central nervous system tumors, gliomas are the most common. Nowadays, researchers are looking for more efficient treatments for these tumors, as well as ways for early diagnosis. Receptor tyrosine kinases (RTKs) are major targets for oncology and the development of small-molecule RTK inhibitors has been proven successful in cancer treatment. Mutations or aberrant activation of the RTKs and their intracellular signaling pathways are linked to several malignant diseases, including glioblastoma. The progress in the understanding of malignant glioma evolution has led to RTK targeted therapies with high capacity to improve the therapeutic response while reducing toxicity. In this review, we present the most important RTKs (i.e. EGFR, IGFR, PDGFR and VEGFR) currently used for developing cancer therapeutics together with the potential of RTK-related drugs in glioblastoma treatment. Also, we focus on some therapeutic agents that are currently at different stages of research or even in clinical phases and proved to be suitable as re-purposing candidates for glioblastoma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...