Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Q ; 43(1): 1-8, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800590

ABSTRACT

AA amyloidosis, characterized by the misfolding of serum amyloid A (SAA) protein, is the most common amyloid protein disorder across multiple species. SAA is a positive-acute phase protein synthesized by the liver in response to inflammation or stress, and it normally associates with high-density lipoprotein at its N-terminus. In this study, we focused on the 1-25 amino acid (aa) region of the complete 104 aa SAA sequence to examine the aggregation propensity of AA amyloid. A library comprising eight peptides from different species was assembled for analysis. To access the aggregation propensity of each peptide region, a bioinformatic study was conducted using the algorithm TANGO. Congo red (CR) binding assays, Thioflavin T (ThT) assays, and transmission electron microscopy (TEM) were utilized to evaluate whether the synthesized peptides formed amyloid-like fibrils. All synthetic SAA 1-25 congeners resulted in amyloid-like fibrils formation (per CR and/or ThT staining and TEM detection) at the exception of the ferret SAA1-25 fragment, which generated plaque-like materials by TEM. Ten residues were preserved among SAA 1-25 congeners resulting in amyloid-like fibrils, i.e. F6, E9, A10, G13, D16, M17, A20, Y21, D23, and M24. Amino acid residues highlighted by this study may have a role in increasing the propensity for amyloid-like fibril formation. This study put an emphasis on region 1-25 in the mechanism of SAA1 misfolding.


Subject(s)
Amyloidosis , Serum Amyloid A Protein , Animals , Serum Amyloid A Protein/chemistry , Serum Amyloid A Protein/metabolism , Ferrets/metabolism , Amyloidosis/veterinary , Amyloidosis/metabolism , Peptides , Amino Acids , Amyloid
2.
Vet Q ; 43(1): 1-12, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729105

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is a health concern for both humans and cats, with cases rising over the past decade. Around 70% of patients from either species exhibit pancreatic aggregates of islet amyloid polypeptide (IAPP), a protein that proves toxic upon misfolding. These misfolded protein aggregates congregate in the islets of Langerhans of the pancreas, diminishing the capability of ß-cells to produce insulin and further perpetuating disease. OBJECTIVE: Our team's drug discovery program is investigating newly synthesized compounds that could diminish aggregates of both human and feline IAPP, potentially disrupting the progression of T2D. MATERIAL AND METHODS: We prepared 24 compounds derived from diaryl urea, as ureas have previously demonstrated great potential at reducing accumulations of misfolded proteins. Biophysical methods were employed to analyze the anti-aggregation activity of these compounds at inhibiting and/or disrupting IAPP fibril formation in vitro. RESULTS: The results demonstrate that compounds 12 and 24 were most effective at reducing the fibrillization and aggregation of both human and feline IAPP. When compared with the control for each experiment, samples treated with either compound 12 or 24 exhibited fewer accumulations of amyloid-like fibrils. CONCLUSION: Urea-based compounds, such as compounds 12 and 24, may prove crucial in future pre-clinical studies in the search for therapeutics for T2D.


Subject(s)
Cat Diseases , Diabetes Mellitus, Type 2 , Islets of Langerhans , Animals , Cats , Humans , Amyloid/analysis , Amyloid/chemistry , Amyloid/metabolism , Cat Diseases/drug therapy , Cat Diseases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/veterinary , Diabetes Mellitus, Type 2/metabolism , Islet Amyloid Polypeptide/analysis , Islet Amyloid Polypeptide/metabolism , Islets of Langerhans/chemistry , Islets of Langerhans/metabolism , Urea/analogs & derivatives , Urea/analysis , Urea/pharmacology , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...