Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Curr Microbiol ; 81(1): 52, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38155273

ABSTRACT

Post-fermented tea production involving microbial fermentation is limited to a few regions, such as Southeast Asia and Japan, with Japan's Shikoku island being particularly prominent. Lactiplantibacillus plantarum was the dominant species found in tea leaves after anaerobic fermentation of Awa-bancha in Miyoshi City, Tokushima, and Ishizuchi-kurocha in Ehime. Although the draft genome of L. plantarum from Japanese post-fermented tea has been previously reported, its genetic diversity requires further exploration. In this study, whole-genome sequencing was conducted on four L. plantarum strains isolated from Japanese post-fermented tea using nanopore sequencing. These isolates were then compared with other sources to examine their genetic diversity revealing that L. plantarum isolated from Japanese post-fermented tea contained several highly variable gene regions associated with sugar metabolism and transportation. However, no source-specific genes or clusters were identified within accessory or core gene regions. This study indicates that L. plantarum possesses high genetic diversity and that the unique environment of Japanese post-fermented tea does not appear to exert selective pressure on L. plantarum growth.


Subject(s)
Carbohydrate Metabolism , Lactobacillus plantarum , Japan , Fermentation , Lactobacillus plantarum/metabolism , Tea/metabolism
2.
J Mech Behav Biomed Mater ; 148: 106226, 2023 12.
Article in English | MEDLINE | ID: mdl-37952506

ABSTRACT

Bioceramics, while offering excellent biocompatibility, are often compromised by their fragility and brittleness, especially under wet conditions. Even though recent hybrid processes combining biocompatible polymers and bioceramics have shown promise, complete mitigation of these challenges remains elusive. In this research, a biomimetic process was employed to mimic the structure of biological bone tissue. This led to the development of block materials composed of octacalcium phosphate (OCP) and sodium polyacrylic acid (PAA-Na) that display flexibility and resilience in wet conditions. Adjusting the PAA-Na concentration enabled the OCP-PAA-Na blocks to demonstrate superior mechanical strength when dry and increased flexibility when wet. Notably, these blocks expanded in aqueous solutions while preserving their structure, making them ideal for oral surgeries by preventing issues like blood flooding from implanted areas.


Subject(s)
Calcium Phosphates , Polymers , Calcium Phosphates/chemistry , Bone and Bones , Bone Cements , Bone Regeneration
3.
Biosci Microbiota Food Health ; 42(4): 254-263, 2023.
Article in English | MEDLINE | ID: mdl-37791341

ABSTRACT

The D-amino acid content of Ishizuchi-kurocha, a post-fermented tea produced in Ehime, Japan, was measured. Ishizuchi-kurocha mainly contains D-glutamic acid and D-alanine, but it also contains a small amount of D-aspartic acid. Two types of lactic acid bacteria, Lactiplantibacillus plantarum and Levilactobacillus brevis, are the main species involved in lactic acid fermentation during the tea fermentation process. Therefore, the D-amino acid-producing abilities of strains of these two species isolated from Ishizuchi-kurocha were examined. Specifically, the production of D-aspartic acid, D-alanine, and D-glutamic acid by L. brevis and L. plantarum strains was observed. The amount of D-aspartic acid produced by L. plantarum was low. D-glutamine was detected in culture supernatant but not in bacterial cells. D-arginine was detected in bacterial cells of the L. plantarum strains but not in the culture supernatant. Both the L. brevis and L. plantarum strains possessed at least three kinds of putative racemase genes: alanine racemase, glutamate racemase, and aspartate racemase. However, their expression and enzyme activity remain unknown. L. plantarum and L. brevis could play an important role in the production of D-amino acids in Ishizuchi-kurocha. In fact, Ishizuchi-kurocha is expected to possess the effective physiological activities of D-amino acids.

4.
Int J Immunopathol Pharmacol ; 37: 3946320231176402, 2023.
Article in English | MEDLINE | ID: mdl-37846071

ABSTRACT

OBJECTIVE: Understand the progress of inflammation over time caused by multi-walled carbon nanotubes (MWCNT). METHODS: Two types of MWCNTs were administered to C57BL/6N mice via intraperitoneal administration at low and high doses (0.05 and 1.0 mg/mouse, respectively). Inflammation was evaluated until 6 months after administration based on cytokine levels and pathological observations. The abdominal cavity lavage fluid was collected and analyzed 1 week, 1, 3, and 6 month(s) after administration. IL-6 expression markedly increased 3 months after the administration of high-dose MWCNT-7. RESULTS: Notable inflammation was observed in the groups administered with one of the MWCNT, MWCNT-7. On the other hand, inflammation in another MWCNT-treated group was milder than that in the MWCNT-7-treated group. MWCNT-7 induced pronounced inflammation but did not induce tumor formation during the experimental period. Inflammation reaction is one of the most important biological responses to MWCNT. CONCLUSION: Three months post-exposure becomes a turning point for the harmful effects of the intraperitoneally administered MWCNT-7.


Subject(s)
Lung , Nanotubes, Carbon , Mice , Animals , Nanotubes, Carbon/toxicity , Mice, Inbred C57BL , Cytokines/metabolism , Inflammation/metabolism , Bronchoalveolar Lavage Fluid
5.
Phys Chem Chem Phys ; 25(39): 26640-26647, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37772427

ABSTRACT

Octacalcium phosphate (OCP), a precursor to apatite, has a layered structure that allows various molecules to be intercalated within its interlayers. Previous research on the phase conversion process of OCP to apatite indicated that the layered structures typically collapse due to the shrinking of the OCP layers. In contrast, this study presents a novel phenomenon involving OCP layer expansion during phase conversion. This expansion is based on a forced oxidation process of the intercalated molecules within the hydrous layers of OCP. By introducing NaClO to an OCP interlayer containing dithiodiglycolic acid (DSG), the OCP layers are expanded. This process involves DSG decomposition through its reaction with NaClO. Specifically, the process occurs when a DSG-substituted OCP (containing disulfide bonds (-S-S-)) is immersed in a NaClO solution. This is the first study to report the expansion phenomenon during the phase conversion process from OCP to apatite, providing a new perspective to the conventional understanding that these layers only shrink.

6.
Toxicol Mech Methods ; 33(9): 741-754, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37496379

ABSTRACT

Cellulose nanofibers (CNFs) are fibrous nanomaterials produced from plants. Since some nanomaterials are toxic, toxicity evaluation, including in vitro examinations using cultured cells, is essential for the effective use of CNFs. On the other hand, microorganisms in the environment can contaminate CNF suspensions. The contamination of CNF samples and the effects of contaminating microorganisms on in vitro examinations were investigated in this study. Microorganism contamination in CNF samples was examined, and microbial inactivation of CNF suspensions using gamma irradiation was evaluated. After gamma-ray irradiation at absorbed doses of 0.5, 1, 5, and 10 kGy, the cellular effects of CNF suspensions were examined using 6 types of cultured cell, HaCaT, A549, Caco-2, MeT-5A, THP-1, and NR8383 cells. CNF samples were contaminated with bacteria and CNF suspensions exhibited endotoxin activity. Gamma irradiation effectively inactivated the microorganisms contained in the CNF suspensions. When the absorbed dose was 10 kGy, the fiber length of CNF was shortened, but the effect on CNF was small at 1.0 kGy or less. CNF suspensions showed lipopolysaccharides (LPS)-like cellular responses and strongly induced interleukin-8, especially in macrophages. Absorbed doses of at least 10 kGy did not affect the LPS-like activity. In this study, it was shown that the CNF suspension may be contaminated with microorganisms. Gamma irradiation was effective for microbial inactivation of suspension for invitor toxicity evaluation of CNF. In vitro evaluation of CNFs requires attention to the effects of contaminants such as LPS.


Subject(s)
Cellulose , Nanofibers , Humans , Cellulose/toxicity , Nanofibers/toxicity , Caco-2 Cells , Microbial Viability , Lipopolysaccharides
7.
ACS Omega ; 8(24): 21464-21473, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360484

ABSTRACT

In nature, minerals record various origins and information for geology and geobiochemistry. Here, we investigated the origin of organic matter and growth mechanism of quartz with oil inclusion revealing fluorescence under short ultraviolet (UV) light, obtained from the clay vein at Shimanto-cho, Kochi, Shikoku Island, Japan. Geological investigation indicated that the oil-quartz was formed in hydrothermal metamorphic veins found in the late Cretaceous interbedded sandstone and mudstone. The obtained oil-quartz crystals are mostly double-terminated. Micro-X-ray computed tomography (microCT) indicated that oil-quartz crystals have various veins originating as skeleton structures along the quartz crystal {111} and {1-11} faces. Spectroscopic and chromatographic studies indicated that aromatic ester and tetraterpene (lycopene) molecules, which revealed fluorescence, were detected. Large molecular weight sterol molecules, such as C40, were also detected in the vein of oil-quartz. This investigation indicated that organic inclusions in mineral crystals would form with ancient microorganism culture environments.

8.
Biomed Mater Eng ; 34(5): 385-398, 2023.
Article in English | MEDLINE | ID: mdl-37125541

ABSTRACT

BACKGROUND: Calcium phosphates including ß-tricalcium phosphate (ß-TCP) and hydroxyapatite (HAp) have been widely used for bone regeneration application because of their high osteoconductive activities. In addition, various kinds of inorganic ions enhance differentiation, proliferation, and mineralization of osteoblasts. However, information about the effects of silver-doped ß-TCP [ß-TCP (Ag)] and HAp [HAp (Ag)] particles on osteogenic differentiation is not available yet. OBJECTIVE: We focused on the impact of ß-TCP (Ag) and HAp (Ag) particles on the osteogenic differentiation of MC3T3-E1 osteoblast precursor cells. METHODS: MC3T3-E1 osteoblast precursor cells were pre-treated by ß-TCP (Ag) or HAp (Ag). And then the medium was changed to differentiation medium. Subsequently, osteoblast differentiation-related markers were determined. RESULTS: We found that treatment with ß-TCP (Ag) or HAp (Ag) particles increased alkaline phosphatase activity in MC3T3-E1 cells. Expression of osteoblast differentiation-related genes also increased after treatment with ß-TCP (Ag) or HAp (Ag) particles, a response thought to be regulated by zinc finger-containing transcription factor osterix. The ratio of the receptor activator of nuclear factor kappa-B ligand (RANKL) to osteoprotegerin (OPG) was decreased by ß-TCP (Ag) and HAp (Ag) particles. CONCLUSION: Silver doping of ß-TCP and HAp particles is effective for bone regeneration.


Subject(s)
Osteogenesis , Silver , Silver/pharmacology , Silver/metabolism , Durapatite/pharmacology , Cell Differentiation , Calcium Phosphates/pharmacology , Calcium Phosphates/metabolism , Osteoblasts
9.
J Toxicol Environ Health A ; 86(10): 326-345, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37016508

ABSTRACT

The cellular effects of 5 types of spherical amorphous silica particles whose particle size were 4.2-12.8 µm for cosmetic use and two types of crystalline silica whose particle size were 2.4 and 7.1 µm particles for industrial use were examined. These silica particles were applied to HaCaT human keratinocytes for 24 hr. Crystalline silica enhanced IL-8 and IL-6 expression and caused cell membrane damage. Crystalline silica also enhanced HO-1 gene expression; however, the level of intracellular ROS did not change. Compared with crystalline silica, the cellular effects of the spherical silica employed in this study were minor. Cellular uptake of particles was observed for all of silica particle types. Cellular uptake of crystalline silica was observed 1 hr after exposure, and internalized silica particles were present in the cytoplasm. When HaCaT cells were exposed to crystalline silica for 1 hr and incubated for 23 hr in culture medium without silica particles, IL-8 expression was still detected. In addition, silica particles exerted negligible effects using a 3D skin tissue model. Thus, the following conclusions may be drawn. (1) cellular effects exerted by spherical silica are less compared to crystalline silica. (2) phagocytosis of particles is an important first step in the cellular effects of silica particles. (3) spherical silica particles might exert little, if any, effect on healthy skin attributed to no apparent cellular uptake.


Subject(s)
Interleukin-8 , Silicon Dioxide , Humans , Silicon Dioxide/toxicity , Phagocytosis , Cells, Cultured , Keratinocytes/metabolism , Particle Size
11.
J Mater Sci Mater Med ; 33(6): 48, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35639182

ABSTRACT

Here, we introduce Ag substituted octacalcium phosphate (OCP-Ag) blocks with interconnected porous structure and sufficient mechanical strength as bone substitute (i.e., foam). We employed a two-step process for fabrication, which includes a setting reaction for acidic calcium phosphate granules using an acidic phosphate solution and a phase conversion process via dissolution-precipitation method in cocktail ((NH4)2HPO4-NH4NO3-NaNO3-AgNO3) solutions. The Ag contents in the fabricated OCP-Ag foams were 0.08-0.15 at%, which were sufficient in exhibiting contact antibacterial ability. The mechanical strength and porosity of the OCP-Ag foams were about 0.5 MPa and 70%, respectively. These values were sufficient for the application of the OCP-Ag foams as bone substitute. Graphical abstract.


Subject(s)
Bone Substitutes , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Porosity , Solubility
12.
Sci Rep ; 12(1): 1676, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102162

ABSTRACT

Frailty is associated with gait variability in several quantitative parameters, including high stride time variability. However, the associations between joint kinematics during walking and increased gait variability with frailty remain unclear. In the current study, principal component analysis was used to identify the key joint kinematics characteristics of gait related to frailty. We analyzed whole kinematic waveforms during the entire gait cycle obtained from the pelvis and lower limb joint angle in 30 older women (frail/prefrail: 15 participants; non-frail: 15 participants). Principal component analysis was conducted using a 60 × 1224 input matrix constructed from participants' time-normalized pelvic and lower-limb-joint angles along three axes (each leg of 30 participants, 51 time points, four angles, three axes, and two variables). Statistical analyses revealed that only principal component vectors 6 and 9 were related to frailty. Recombining the joint kinematics corresponding to these principal component vectors revealed that frail older women tended to exhibit greater variability of knee- and ankle-joint angles in the sagittal plane while walking compared with non-frail older women. We concluded that greater variability of knee- and ankle-joint angles in the sagittal plane are joint kinematic characteristics of gait related to frailty.


Subject(s)
Frail Elderly , Frailty/physiopathology , Gait Analysis , Video Recording , Walking , Age Factors , Aged , Ankle Joint/physiopathology , Biomechanical Phenomena , Case-Control Studies , Female , Frailty/diagnosis , Humans , Image Interpretation, Computer-Assisted , Knee Joint/physiopathology , Middle Aged , Principal Component Analysis , Range of Motion, Articular , Sex Factors , Time Factors
13.
Microbes Environ ; 36(4)2021.
Article in English | MEDLINE | ID: mdl-34840198

ABSTRACT

The lactic acid bacteria involved in fermentation and components in the tea leaves of Awa-bancha, a post-fermented tea produced in Naka, Kamikatsu, and Miyoshi, Tokushima, were investigated in the present study. Lactic acid bacteria were isolated from tea leaves after anaerobic fermentation and identified by multiplex PCR targeting of the recA gene and 16S ribosomal RNA gene homology. Lactiplantibacillus pentosus was the most frequently isolated species in Naka and Kamikatsu and Lactiplantibacillus plantarum in Miyoshi. In the phylogenetic tree based on the dnaK gene, L. pentosus isolated from Awa-bancha was roughly grouped by the production area and producer. The bacterial flora after anaerobic fermentation was dominated by Lactiplantibacillus spp. for most producers, and the compositions of samples from each producer varied. Organic acids, free amino acids, and catechins were analyzed as components related to the flavor of Awa-bancha. These components were unique to each producer. The present results revealed diversity in the lactic acid bacteria and flavor of Awa-bancha that depended on the producer.


Subject(s)
Fermentation , Lactobacillales , Phylogeny , Tea/microbiology , Japan , Lactobacillales/cytology , RNA, Ribosomal, 16S/genetics
14.
Biosci Biotechnol Biochem ; 86(1): 117-124, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34669923

ABSTRACT

Ishizuchi-kurocha is a popular postfermented tea in Japan. It is performed by domestic and natural fermentation relied on microorganisms derived from tea leaves or the environment of the manufacturing. Ishizuchi-kurocha undergoes aerobic fermentation of fungi first, then second fermented by anaerobic fermentation of lactic acid bacteria during natural fermentation processing. Aspergillus niger that produces mycotoxin is included in natural fermentation. This research aimed to build a novel fermentation method of Ishizuchi-kurocha by adding industrial koji fungi products and laboratory-cultivated Lactobacillus plantarum (Lactiplantibacillus plantarum) artificially. Thus, safety and quality of tea products could be controlled simply. We found artificial fermentation of Ishizuchi-kurocha could get high lactic acid production within 8 days. Final products only consisted of genus Aspergillus and genus Lactobacillus, while harmful Aspergillus niger was not found. However, artificial fermentation methods also decreased the content of polyphenols when compared with commercial tea.


Subject(s)
Aspergillus
15.
Environ Toxicol ; 36(10): 2040-2050, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34189835

ABSTRACT

In this study, the cellular effects of lead (Pb) nanoparticles with a primary particle size of 80 nm were evaluated in two types of cell lines: human lung carcinoma A549 and macrophage-differentiated THP-1 cells (dTHP-1). The cellular responses induced by the Pb nanoparticles varied among the cell types. Exposure to Pb nanoparticles for 24 h at a concentration of 100 µg/ml induced interleukin-8 (IL-8) expression in dTHP-1 cells. Induction of IL-8 expression in A549 was lower than dTHP-1 cells. Pb nanoparticles also induced the gene expression of heme oxygenase-1 in dTHP-1 cells but not in A549 cells. Though cellular uptake of Pb nanoparticles was observed in both the cell types, the amount of internalized Pb particles was lower in A549 cells than that in dTHP-1 cells. Gene expression of metallothionein 2A was remarkably enhanced by Pb nanoparticle exposure in dTHP-1 cells. Compared with Pb nanoparticles, induction of cytokines caused by lead nitrate (Pb[NO3 ]2 ), a water-soluble Pb compound, was smaller. In conclusion, the present study revealed that Pb nanoparticles induced a stronger cellular response than Pb(NO3 )2 , primarily by eliciting cytokine production, in a cell type-dependent manner.


Subject(s)
Lead , Nanoparticles , A549 Cells , Humans , Lead/toxicity , Nanoparticles/toxicity , Particle Size , THP-1 Cells
16.
Free Radic Res ; 55(4): 331-342, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33336617

ABSTRACT

Oxidative stress plays a critical role in nanotoxicity. Various types of nanoparticles are known to induce oxidative stress by generating intracellular reactive oxygen species (ROS). Cellular uptake of nanoparticles and intracellular metal ion release are important factors for intracellular ROS generation. Besides, ROS generation can result from interactions of nanoparticles and cells that lead to mitochondrial dysfunction. In vivo, nanoparticles induce the secretion of cytokines, which, in turn, induce secondary oxidative stress via generation of ROS and free radicals. However, not all nanoparticles induce oxidative stress. Intracellular ROS generation by nanoparticles depends on their physical and chemical properties, such as the crystalline phase, adsorption ability, and solubility. Even if the particle size is nanoscale (1-100 nm), physically and chemically inactive particles do not induce oxidative stress. Thus, the particle size is not a direct influencing factor in nanoparticle-induced oxidative stress.


Subject(s)
Nanoparticles/adverse effects , Animals , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Nanoparticles/metabolism , Oxidative Stress , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism
17.
RSC Adv ; 11(62): 39503-39507, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492470

ABSTRACT

Octacalcium phosphate (OCP) has been considered as the layer component of calcium phosphate, but whether it achieves the ionic-exchange ability of conventional layer components is unclear. As OCP is highly biocompatible, understanding its ionic-exchange properties would potentially expand its pharmaceutical and medical applications. Herein, we demonstrate that the substituted cations in ammonium (NH4)-substituted octacalcium phosphate (OCP-NH4) and sodium (Na)-containing ammonium phosphate solutions undergo ion exchanges with OCP interlayers. Replacing NH4 + with Na+ did not alter the crystal structure of OCP, confirming that a substituted cation exchange process similar to that in other layered compounds occurs in OCP.

18.
RSC Adv ; 11(20): 12330-12335, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423780

ABSTRACT

Silica is not only a biocompatible trace element but also an essential element for bone formation and metabolism. Therefore, it is often doped into bioceramics such as calcium phosphate and calcium carbonate for enhancing biomaterial ability. Heretofore, organic silica materials are employed as silica sources, but the residual organic matter is a significant drawback in biomaterial applications. Therefore, in this study, we introduce a one-pot inorganic synthesis method for the formation of silica-doped octacalcium phosphate (OCP) using Na2SiO3 as the silica source. Silica was intercalated into the OCP unit lattice, replacing its hydrous layer structure, and then a layer-by-layer structure of apatite and silica was formed. Furthermore, by immersing the fabricated silica-doped OCP into suitable solutions, both silica-doped hydroxyapatite and carbonate apatite were fabricated through a one-step inorganic processes.

19.
ACS Omega ; 5(38): 24434-24444, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33015459

ABSTRACT

Since the introduction of biomaterials, infection has been a serious problem in clinical operations. Although several studies have introduced hybrid materials of calcium phosphate and Ag0 nanoparticles (NPs) that exhibit antibacterial activity, released Ag+ ions and Ag0 NPs are highly cytotoxic and the materials require complex fabrication techniques such as laser irradiation. In this study, we introduce a simple one-pot synthesis method based on crystal-engineering techniques to prepare Ag+-substituted octacalcium phosphate (OCP-Ag) powder that simultaneously exhibits antibacterial activity, little change in color, and low cytotoxicity, thereby overcoming the shortcomings of calcium phosphate as a biomaterial. We used AgNO3-containing (NH4)2HPO4 aqueous solutions as reaction solutions in which Ag+ forms soluble complex [Ag(NH3)2]+ ions that are stable at Ag+ concentrations less than ∼30 mmol/L. Hydrolysis of soluble calcium phosphate in this solution led to pure OCP-Ag when the Ag+ concentration was less than ∼30 mmol/L. Crystallographic analysis showed that Ag+ substituted at the P5 PO4-conjugated sites and was uniformly distributed. When the concentration of Ag+ in the reaction solution was varied, the Ag+ content of the OCP-Ag could be controlled. The obtained OCP-Ag exhibited little color change or Ag+ release when immersed in various media; however, it exhibited contact antibacterial ability toward resident oral bacteria. The prepared OCP-Ag showed no substantial cytotoxicity toward undifferentiated and differentiated MC3T3-E1 cells in assays. Notably, when the Ag+ content in OCP-Ag was optimized (Ag: ∼1 at %), it simultaneously exhibited contact antibacterial ability, little color change, and low cytotoxicity.

20.
Anal Bioanal Chem ; 412(30): 8269-8282, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33025033

ABSTRACT

Nanoparticles (NPs) are promising products in industry and medicine due to their unique physicochemical properties. In particular, zinc oxide (ZnO) NPs are extensively incorporated into sunscreens to protect the skin from exposure to ultraviolet radiation. However, there are several health concerns about skin penetration and the resultant toxicity. As methodologies for evaluating NP toxicity are under development, it is difficult to fully assess the toxicity of ZnO NPs toward humans. In this study, we developed a platform to simultaneously detect skin permeability to and pro-inflammatory activity mediated by zinc ion released from NPs. First, we generated a stable reporter cell line expressing green fluorescent protein (GFP) under the control of interleukin-8 (IL-8) promoter activity. The expression levels of GFP induced by zinc reflected the endogenous IL-8 expression levels and the pro-inflammatory responses. Next, we found that fibrin hydrogel can reproduce permeability to zinc ion of a human skin equivalent model and is therefore a promising material to assess skin permeability to zinc ion. Then, we constructed a fibrin hydrogel-based in vitro bioassay system for the simultaneous detection of skin permeability to and pro-inflammatory activity mediated by zinc ion released from NPs by using a stable reporter cell line and a fibrin hydrogel layer. This bioassay system is a promising in vitro permeation test due to its technical simplicity and good predictability. Overall, we believe that our bioassay system can be widely used in the cosmetics and pharmaceutical industries.


Subject(s)
Biological Assay/methods , Fibrin/chemistry , Hydrogels/chemistry , Inflammation/metabolism , Metal Nanoparticles/chemistry , Skin/drug effects , Zinc/pharmacology , Alginates/metabolism , Cell Line , Collagen/metabolism , Fibrin/metabolism , Humans , In Vitro Techniques , Interleukin-8/genetics , Interleukin-8/metabolism , Permeability , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...