Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Med (Lausanne) ; 10: 1132749, 2023.
Article in English | MEDLINE | ID: mdl-37469663

ABSTRACT

Introduction: Mesenchymal stromal cells (MSC) are a promising therapeutic for pneumonia-induced sepsis. Here we sought to determine the efficacy of delayed administration of naïve and activated bone marrow (BM), adipose (AD), and umbilical cord (UC) derived MSCs in organized antibiotic resistant Klebsiella pneumosepsis. Methods: Human BM-, AD-, and UC-MSCs were isolated and expanded and used either in the naïve state or following cytokine pre-activation. The effect of MSC tissue source and activation status was assessed first in vitro. Subsequent experiments assessed therapeutic potential as a delayed therapy at 48 h post infection of rodents with Klebsiella pneumoniae, with efficacy assessed at 120 h. Results: BM-, AD-, and UC-MSCs accelerated epithelial healing, increased phagocytosis, and reduced ROS-induced epithelial injury in vitro, with AD-MSCs less effective, and naïve MSCs more effective than pre-activated MSCs. Delayed MSC administration in pre-clinical organized Klebsiella pneumosepsis had no effect on physiologic indices, but enhanced resolution of structural lung injury. Delayed therapy with pre-activated MSCs reduced mRNA concentrations of fibrotic factors. Naïve MSC treatment reduced key circulating cell proportions and increased bacterial killing capacity in the lungs whereas pre-activated MSCs enhanced the phagocytic index of pulmonary white cells. Discussion: Delayed MSC therapy enhanced resolution of lung injury induced by antibiotic resistant Klebsiella infection and favorably modulated immune cell profile. Overall, AD-MSCs were less effective than either UC- or BM-MSCs, while naïve MSCs had a more favorable effect profile compared to pre-activated MSCs.

2.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884645

ABSTRACT

BACKGROUND: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. METHODS: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. RESULTS: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. CONCLUSIONS: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Ventilator-Induced Lung Injury/therapy , Animals , Cell Line, Tumor , Cells, Cultured , Cryopreservation/methods , Culture Media, Conditioned , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Umbilical Cord/metabolism , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology
3.
Interface Focus ; 11(2): 20200032, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33628425

ABSTRACT

Carbon dioxide (CO2) has long been considered, at best, a waste by-product of metabolism, and at worst, a toxic molecule with serious health consequences if physiological concentration is dysregulated. However, clinical observations have revealed that 'permissive' hypercapnia, the deliberate allowance of respiratory produced CO2 to remain in the patient, can have anti-inflammatory effects that may be beneficial in certain circumstances. In parallel, studies at the cell level have demonstrated the profound effect of CO2 on multiple diverse signalling pathways, be it the effect from CO2 itself specifically or from the associated acidosis it generates. At the whole organism level, it now appears likely that there are many biological sensing systems designed to respond to CO2 concentration and tailor respiratory and other responses to atmospheric or local levels. Animal models have been widely employed to study the changes in CO2 levels in various disease states and also to what extent permissive or even directly delivered CO2 can affect patient outcome. These findings have been advanced to the bedside at the same time that further clinical observations have been elucidated at the cell and animal level. Here we present a synopsis of the current understanding of how CO2 affects mammalian biological systems, with a particular emphasis on inflammatory pathways and diseases such as lung specific or systemic sepsis. We also explore some future directions and possibilities, such as direct control of blood CO2 levels, that could lead to improved clinical care in the future.

4.
Curr Opin Crit Care ; 27(1): 20-28, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33278121

ABSTRACT

PURPOSE OF REVIEW: Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS: Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY: Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.


Subject(s)
COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mesenchymal Stem Cells , Respiratory Distress Syndrome , COVID-19/complications , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2
5.
Intensive Care Med Exp ; 8(Suppl 1): 20, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33336293

ABSTRACT

Sepsis is a syndrome of shock and dysfunction of multiple vital organs that is caused by an uncontrolled immune response to infection and has a high mortality rate. There are no therapies for sepsis, and it has become a global cause for concern. Advances in patient care and management now mean that most patients survive the initial hyper-inflammatory phase of sepsis but progress to a later immunosuppressed phase, where 30% of patients die due to secondary infection. Deficits in the adaptive immune response may play a major role in sepsis patient mortality. The adaptive immune response involves a number of cell types including T cells, B cells and dendritic cells, all with immunoregulatory roles aimed at limiting damage and returning immune homeostasis after infection or insult. However, in sepsis, adaptive immune cells experience cell death or exhaustion, meaning that they have defective effector and memory responses ultimately resulting in an ineffective or suppressed immune defence. CD4+ T cells seem to be the most susceptible to cell death during sepsis and have ensuing defective secretory profiles and functions. Regulatory T cells seem to evade apoptosis and contribute to the immune suppression observed with sepsis. Preclinical studies have identified a number of new targets for therapy in sepsis including anti-apoptotic agents and monoclonal antibodies aimed at reducing cell death, exhaustion and maintaining/restoring adaptive immune cell functions. While early phase clinical trials have demonstrated safety and encouraging signals for biologic effect, larger scale clinical trial testing is required to determine whether these strategies will prove effective in improving outcomes from sepsis.

6.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158246

ABSTRACT

Mesenchymal stromal cells (MSCs) have a multimodal, immunomodulatory mechanism of action and are now in clinical trials for single organ and systemic sepsis. However, a number of practicalities around source, homogeneity and therapeutic window remain to be determined. Here, we utilised conditioned medium from CD362+-sorted umbilical cord-human MSCs (UC-hMSCs) for a series of in vitro anti-inflammatory assays and the cryopreserved MSCs themselves in a severe (Series 1) or moderate (Series 2+3) caecal ligation and puncture (CLP) rodent model. Surviving animals were assessed at 48 h post injury induction. MSCs improved human lung, colonic and kidney epithelial cell survival following cytokine activation. In severe systemic sepsis, MSCs administered at 30 min enhanced survival (Series 1), and reduced organ bacterial load. In moderate systemic sepsis (Series 2), MSCs were ineffective when delivered immediately or 24 h later. Of importance, MSCs delivered 4 h post induction of moderate sepsis (Series 3) were effective, improving serum lactate, enhancing bacterial clearance from tissues, reducing pro-inflammatory cytokine concentrations and increasing antimicrobial peptides in serum. While demonstrating benefit and immunomodulation in systemic sepsis, therapeutic efficacy may be limited to a specific point of disease onset, and repeat dosing, MSC enhancement or other contingencies may be necessary.


Subject(s)
Cecum/microbiology , Coinfection/therapy , Mesenchymal Stem Cell Transplantation/methods , Sepsis/therapy , Animals , Antigens, CD/metabolism , Cecum/pathology , Cecum/surgery , Cells, Cultured , Coinfection/complications , Coinfection/etiology , Cord Blood Stem Cell Transplantation/methods , Disease Models, Animal , Humans , Ligation/adverse effects , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Punctures/adverse effects , Rats , Rats, Sprague-Dawley , Sepsis/etiology , Sepsis/microbiology , Umbilical Cord/cytology , Umbilical Cord/metabolism
7.
Intensive Care Med ; 46(12): 2265-2283, 2020 12.
Article in English | MEDLINE | ID: mdl-32654006

ABSTRACT

ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite considerable advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effective pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: (1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies 'precision medicines.' It is hoped that the substantial number of studies globally investigating potential therapies for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this devastating form of ARDS.


Subject(s)
COVID-19 Drug Treatment , Drug Therapy/trends , Respiratory Distress Syndrome/drug therapy , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Citrulline/therapeutic use , Glycoproteins/therapeutic use , Humans , Mesenchymal Stem Cells , Pandemics , Peptides, Cyclic/therapeutic use , Pyridones/therapeutic use , Pyrimidines/therapeutic use , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/therapeutic use , Steroids/therapeutic use , Trypsin Inhibitors/therapeutic use
8.
Stem Cell Res Ther ; 11(1): 116, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32169108

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) demonstrate considerable promise for acute respiratory distress syndrome (ARDS) and sepsis. However, standard approaches to MSC isolation generate highly heterogeneous cell populations, while bone marrow (BM) constitutes a limited and difficult to access MSC source. Furthermore, a range of cell manufacturing considerations and clinical setting practicalities remain to be explored. METHODS: Adult male rats were subject to E. coli-induced pneumonia and administered CD362+ umbilical cord (UC)-hMSCs using a variety of cell production and clinical relevance considerations. In series 1, animals were instilled with E. coli and randomized to receive heterogeneous BM or UC-hMSCs or CD362+ UC-hMSCs. Subsequent series examined the impact of concomitant antibiotic therapy, MSC therapeutic cryopreservation (cryopreserved vs fresh CD362+ UC-hMSCs), impact of cell passage on efficacy (passages 3 vs 5 vs 7 vs 10), and delay of administration of cell therapy (0 h vs 6 h post-injury vs 6 h + 12 h) following E. coli installation. RESULTS: CD362+ UC-hMSCs were as effective as heterogonous MSCs in reducing E. coli-induced acute lung injury, improving oxygenation, decreasing bacterial load, reducing histologic injury, and ameliorating inflammatory marker levels. Cryopreserved CD362+ UC-hMSCs recapitulated this efficacy, attenuating E. coli-induced injury, but therapeutic relevance did not extend beyond passage 3 for all indices. CD362+ UC-hMSCs maintained efficacy in the presence of antibiotic therapy and rescued the animal from E. coli injury when delivered at 6 h + 12 h, following E. coli instillation. CONCLUSIONS: These translational studies demonstrated the efficacy of CD362+ UC-hMSCs, where they decreased the severity of E. coli-induced pneumonia, maintained efficacy following cryopreservation, were more effective at early passage, were effective in the presence of antibiotic therapy, and could continue to provide benefit at later time points following E. coli injury.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pneumonia, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Cryopreservation , Escherichia coli , Male , Rats , Umbilical Cord
9.
Intensive Care Med Exp ; 8(1): 8, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32025852

ABSTRACT

BACKGROUND: Human mesenchymal stem/stromal cells (hMSCs) represent a promising therapeutic strategy for ventilator-induced lung injury (VILI) and acute respiratory distress syndrome. Translational challenges include restoring hMSC efficacy following cryopreservation, developing effective xenogeneic-free (XF) hMSCs and establishing true therapeutic potential at a clinically relevant time point of administration. We wished to determine whether cytokine pre-activation of cryopreserved, bone marrow-derived XF-hMSCs would enhance their capacity to facilitate injury resolution following VILI and elucidate mechanisms of action. METHODS: Initially, in vitro studies examined the potential for the secretome from cytokine pre-activated XF-hMSCs to attenuate pulmonary epithelial injury induced by cyclic mechanical stretch. Later, anaesthetised rats underwent VILI and, 6 h following injury, were randomized to receive 1 × 107 XF-hMSC/kg that were (i) naive fresh, (ii) naive cryopreserved, (iii) cytokine pre-activated fresh or (iv) cytokine pre-activated cryopreserved, while control animals received (v) vehicle. The extent of injury resolution was measured at 24 h after injury. Finally, the role of keratinocyte growth factor (KGF) in mediating the effect of pre-activated XF-hMSCs was determined in a pulmonary epithelial wound repair model. RESULTS: Pre-activation enhanced the capacity of the XF-hMSC secretome to decrease stretch-induced pulmonary epithelial inflammation and injury. Both pre-activated fresh and cryopreserved XF-hMSCs enhanced resolution of injury following VILI, restoring oxygenation, improving lung compliance, reducing lung leak and improving resolution of lung structural injury. Finally, the secretome of pre-activated XF-hMSCs enhanced epithelial wound repair, in part via a KGF-dependent mechanism. CONCLUSIONS: Cytokine pre-activation enhanced the capacity of cryopreserved, XF-hMSCs to promote injury resolution following VILI, potentially via a KGF-dependent mechanism.

10.
Eur Respir J ; 54(4)2019 10.
Article in English | MEDLINE | ID: mdl-31346004

ABSTRACT

RATIONALE: We wished to determine the influence of sex on the management and outcomes in acute respiratory distress syndrome (ARDS) patients in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE). METHODS: We assessed the effect of sex on mortality, intensive care unit and hospital length of stay, and duration of invasive mechanical ventilation (IMV) in patients with ARDS who underwent IMV, adjusting for plausible clinical and geographic confounders. FINDINGS: Of 2377 patients with ARDS, 905 (38%) were female and 1472 (62%) were male. There were no sex differences in clinician recognition of ARDS or critical illness severity profile. Females received higher tidal volumes (8.2±2.1 versus 7.2±1.6 mL·kg-1; p<0.0001) and higher plateau and driving pressures compared with males. Lower tidal volume ventilation was received by 50% of females compared with 74% of males (p<0.0001). In shorter patients (height ≤1.69 m), females were significantly less likely to receive lower tidal volumes. Surviving females had a shorter duration of IMV and reduced length of stay compared with males. Overall hospital mortality was similar in females (40.2%) versus males (40.2%). However, female sex was associated with higher mortality in patients with severe confirmed ARDS (OR for sex (male versus female) 0.35, 95% CI 0.14-0.83). CONCLUSIONS: Shorter females with ARDS are less likely to receive lower tidal volume ventilation, while females with severe confirmed ARDS have a higher mortality risk. These data highlight the need for better ventilatory management in females to improve their outcomes from ARDS.


Subject(s)
Hospital Mortality , Length of Stay/statistics & numerical data , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Adult , Aged , Body Height , Cohort Studies , Duration of Therapy , Female , Humans , Ideal Body Weight , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Mortality , Pneumonia/epidemiology , Prospective Studies , Respiration, Artificial/statistics & numerical data , Respiratory Aspiration of Gastric Contents/epidemiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/mortality , Sepsis/epidemiology , Severity of Illness Index , Sex Factors , Tidal Volume , Treatment Outcome
11.
J Thorac Dis ; 10(9): 5607-5620, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30416812

ABSTRACT

Acute respiratory distress syndrome (ARDS) is driven by a severe pro-inflammatory response resulting in lung damage, impaired gas exchange and severe respiratory failure. There is no specific treatment that effectively improves outcome in ARDS. However, in recent years, cell therapy has shown great promise in preclinical ARDS studies. A wide range of cells have been identified as potential candidates for use, among these are mesenchymal stromal cells (MSCs), which are adult multi-lineage cells that can modulate the immune response and enhance repair of damaged tissue. The therapeutic potential of MSC therapy for sepsis and ARDS has been demonstrated in multiple in vivo models. The therapeutic effect of these cells seems to be due to two different mechanisms; direct cellular interaction, and paracrine release of different soluble products such as extracellular vesicles (EVs)/exosomes. Different approaches have also been studied to enhance the therapeutic effect of these cells, such as the over-expression of anti-inflammatory or pro-reparative molecules. Several clinical trials (phase I and II) have already shown safety of MSCs in ARDS and other diseases. However, several translational issues still need to be addressed, such as the large-scale production of cells, and their potentiality and variability, before the therapeutic potential of stem cells therapies can be realized.

12.
Anesthesiology ; 129(3): 502-516, 2018 09.
Article in English | MEDLINE | ID: mdl-29979191

ABSTRACT

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human mesenchymal stromal cells demonstrate promise for acute respiratory distress syndrome, but current studies use highly heterogenous cell populations. We hypothesized that a syndecan 2 (CD362)-expressing human mesenchymal stromal cell subpopulation would attenuate Escherichia coli-induced lung injury and enhance resolution after ventilator-induced lung injury. METHODS: In vitro studies determined whether CD362 human mesenchymal stromal cells could modulate pulmonary epithelial inflammation, wound healing, and macrophage phagocytosis. Two in vivo rodent studies determined whether CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced lung injury (n = 10/group) and enhanced resolution of ventilation-induced injury (n = 10/group). RESULTS: CD362 human mesenchymal stromal cells attenuated cytokine-induced epithelial nuclear factor kappa B activation, increased epithelial wound closure, and increased macrophage phagocytosis in vitro. CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced injury in rodents, improving arterial oxygenation (mean ± SD, 83 ± 9 vs. 60 ± 8 mmHg, P < 0.05), improving lung compliance (mean ± SD: 0.66 ± 0.08 vs. 0.53 ± 0.09 ml · cm H2O, P < 0.05), reducing bacterial load (median [interquartile range], 1,895 [100-3,300] vs. 8,195 [4,260-8,690] colony-forming units, P < 0.05), and decreasing structural injury compared with vehicle. CD362 human mesenchymal stromal cells were more effective than CD362 human mesenchymal stromal cells and comparable to heterogenous human mesenchymal stromal cells. CD362 human mesenchymal stromal cells enhanced resolution after ventilator-induced lung injury in rodents, restoring arterial oxygenation (mean ± SD: 113 ± 11 vs. 89 ± 11 mmHg, P < 0.05) and lung static compliance (mean ± SD: 0.74 ± 0.07 vs. 0.45 ± 0.07 ml · cm H2O, P < 0.05), resolving lung inflammation, and restoring histologic structure compared with vehicle. CD362 human mesenchymal stromal cells efficacy was at least comparable to heterogenous human mesenchymal stromal cells. CONCLUSIONS: A CD362 human mesenchymal stromal cell population decreased Escherichia coli-induced pneumonia severity and enhanced recovery after ventilator-induced lung injury.


Subject(s)
Acute Lung Injury/therapy , Escherichia coli Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Syndecan-2/biosynthesis , Ventilator-Induced Lung Injury/therapy , A549 Cells , Acute Lung Injury/etiology , Acute Lung Injury/microbiology , Animals , Bone Marrow/metabolism , Escherichia coli/isolation & purification , Escherichia coli Infections/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Rats , Rats, Sprague-Dawley , U937 Cells , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/microbiology
13.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27408702

ABSTRACT

Acute respiratory distress syndrome (ARDS) causes respiratory failure, which is associated with severe inflammation and lung damage and has a high mortality and for which there is no therapy. Mesenchymal stromal/stem cells (MSCs) are adult multi-progenitor cells that can modulate the immune response and enhance repair of damaged tissue and thus may provide a therapeutic option for ARDS. MSCs demonstrate efficacy in diverse in vivo models of ARDS, decreasing bacterial pneumonia and ischemia-reperfusion-induced injury while enhancing repair following ventilator-induced lung injury. MSCs reduce the pro-inflammatory response to injury while augmenting the host response to bacterial infection. MSCs appear to exert their effects via multiple mechanisms-some are cell interaction dependent whereas others are paracrine dependent resulting from both soluble secreted products and microvesicles/exosomes derived from the cells. Strategies to further enhance the efficacy of MSCs, such as by overexpressing anti-inflammatory or pro-repair molecules, are also being investigated. Encouragingly, early phase clinical trials of MSCs in patients with ARDS are under way, and experience with these cells in trials for other diseases suggests that the cells are well tolerated. Although considerable translational challenges, such as concerns regarding cell manufacture scale-up and issues regarding cell potency and batch variability, must be overcome, MSCs constitute a highly promising potential therapy for ARDS.

14.
Intensive Care Med Exp ; 4(1): 8, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27001525

ABSTRACT

BACKGROUND: Hypercapnia, with its associated acidosis (HCA), is a consequence of respiratory failure and is also seen in critically ill patients managed with conventional "protective" ventilation strategies. Nuclear factor kappa-B (NF-κB), a pivotal transcription factor, is activated in the setting of injury and repair and is central to innate immunity. We have previously established that HCA protects against ventilation-induced lung injury in vivo, potentially via a mechanism involving inhibition of NF-κB signaling. We wished to further elucidate the role and mechanism of HCA-mediated inhibition of the NF-κB pathway in attenuating stretch-induced injury in vitro. METHODS: Initial experiments examined the effect of HCA on cyclic stretch-induced inflammation and injury in human bronchial and alveolar epithelial cells. Subsequent experiments examined the role of the canonical NF-κB pathway in mediating stretch-induced injury and the mechanism of action of HCA. The contribution of pH versus CO2 in mediating this effect of HCA was also examined. RESULTS: Pulmonary epithelial high cyclic stretch (22 % equibiaxial strain) activated NF-κB, enhanced interleukin-8 (IL-8) production, caused cell injury, and reduced cell survival. In contrast, physiologic stretch (10 % strain) did not activate inflammation or cause cell injury. HCA reduced cyclic mechanical stretch-induced NF-κB activation, attenuated IL-8 production, reduced injury, and enhanced survival, in bronchial and alveolar epithelial cells, following shorter (24 h) and longer (120 h) cyclic mechanical stretch. Pre-conditioning with HCA was less effective than when HCA was applied after commencement of cell stretch. HCA prevented the stretch-induced breakdown of the NF-κB cytosolic inhibitor IκBα, while IκBα overexpression "occluded" the effect of HCA. These effects were mediated by a pH-dependent mechanism rather than via CO2 per se. CONCLUSIONS: HCA attenuates adverse mechanical stretch-induced epithelial injury and death, via a pH-dependent mechanism that inhibits the canonical NF-κB activation by preventing IκBα breakdown.

15.
Crit Care Med ; 44(4): e207-17, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26584194

ABSTRACT

OBJECTIVE: Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. DESIGN: In vivo animal study and subsequent in vitro studies. SETTING: University Research Laboratory. SUBJECTS: Adult male Sprague-Dawley rats and pulmonary epithelial cells. INTERVENTIONS: Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. MEASUREMENTS AND MAIN RESULTS: Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-ß activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. CONCLUSIONS: Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-ß.


Subject(s)
Acidosis, Respiratory/metabolism , Hypercapnia/metabolism , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , Animals , Escherichia coli , I-kappa B Kinase/metabolism , Lung Injury/metabolism , Male , NF-KappaB Inhibitor alpha , NF-kappa B/genetics , Rats , Rats, Sprague-Dawley , Respiration, Artificial , Respiratory Distress Syndrome/metabolism , Sepsis , Signal Transduction
16.
Curr Opin Crit Care ; 22(1): 14-20, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26645555

ABSTRACT

PURPOSE OF REVIEW: Acute respiratory distress syndrome (ARDS) is a devastating disease process with a 40% mortality rate, and for which there is no therapy. Stem cells are an exciting potential therapy for ARDS, and are currently the subject of intensive ongoing research efforts. We review data concerning the therapeutic promise of cell-based therapies for ARDS. RECENT FINDINGS: Recent experimental studies suggest that cell-based therapies, particularly mesenchymal stem/stromal cells (MSCs), endothelial progenitor cells, and embryonic or induced pluripotent stem cells all offer considerable promise for ARDS. Of these cell types, mesenchymal stromal cells offer the greatest potential for allogeneic therapy, given the large body of preclinical data supporting their use, and the advanced state of our understanding of their diverse mechanisms of action. Although other stem cells such as EPCs also have therapeutic potential, greater barriers exist, particularly the requirement for autologous EPC therapy. Other stem cells, such as ESCs and iPSCs, are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. Ultimately, lung-derived stem cells may offer the greatest hope for lung diseases, given their homeostatic role in replacing and repairing damaged native lung tissues.MSCs are currently in early phase clinical trials, the results of which will be of critical importance to subsequent translational efforts for MSCs in ARDS. A number of translational challenges exist, including minimizing variability in cell batches, developing standard tests for cell potency, and producing large amounts of clinical-grade cells for use in patients. SUMMARY: Cell-based therapies, particularly MSCs, offer considerable promise for the treatment of ARDS. Overcoming translational challenges will be important to fully realizing their therapeutic potential for ARDS.


Subject(s)
Acute Lung Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Respiratory Distress Syndrome/therapy , Acute Lung Injury/diagnosis , Acute Lung Injury/mortality , Animals , Clinical Trials as Topic , Disease Models, Animal , Graft Rejection , Graft Survival , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Prognosis , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , Risk Assessment , Severity of Illness Index , Survival Analysis , Treatment Outcome
18.
Thorax ; 70(7): 625-35, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25986435

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) demonstrate considerable promise in preclinical acute respiratory distress syndrome models. We wished to determine the efficacy and mechanisms of action of human MSCs (hMSCs) in the setting of acute lung injury induced by prolonged Escherichia coli pneumonia in the rat. METHODS: Adult male Sprague Dawley rats underwent intratracheal instillation of E. coli bacteria in all experiments. In Series 1, animals were randomised to intravenous administration of: (1) vehicle (phosphate buffered saline (PBS), 300 µL); (2) 1×10(7) fibroblasts/kg; (3) 1×10(7) hMSCs/kg or (4) 2×10(7) hMSCs/kg. Series 2 determined the lowest effective hMSC dose. Series 3 compared the efficacy of intratracheal versus intravenous hMSC administration, while Series 4 examined the efficacy of cryopreserved hMSC. Series 5 examined the efficacy of the hMSC secretome. Parallel in vitro experiments further assessed the potential for hMSCs to secrete LL-37 and modulate macrophage phagocytosis. RESULTS: hMSC therapy reduced the severity of rodent E. coli pneumonia, improving survival, decreasing lung injury, reducing lung bacterial load and suppressing inflammation. Doses as low as 5×10(6) hMSCs/kg were effective. Intratracheal hMSC therapy was as effective as intravenous hMSC. Cryopreserved hMSCs were also effective, while the hMSC secretome was less effective in this model. hMSC therapy enhanced macrophage phagocytic capacity and increased lung and systemic concentrations of the antimicrobial peptide LL37. CONCLUSIONS: hMSC therapy decreased E. coli induced pneumonia injury and reduced lung bacterial burden, potentially via enhanced macrophage phagocytosis and increased alveolar LL-37 concentrations.


Subject(s)
Acute Lung Injury/prevention & control , Escherichia coli Infections/prevention & control , Mesenchymal Stem Cell Transplantation/methods , Pneumonia, Bacterial/prevention & control , Acute Lung Injury/immunology , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Animals , Bacterial Load , Cryopreservation , Disease Models, Animal , Escherichia coli/isolation & purification , Escherichia coli Infections/complications , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Humans , Infusions, Intravenous , Intubation, Intratracheal , Lung/microbiology , Male , Phagocytosis , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Rats, Sprague-Dawley , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...