Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0208959, 2018.
Article in English | MEDLINE | ID: mdl-30586438

ABSTRACT

Transcription activator-like effector nuclease (TALEN) is an artificial nuclease that causes DNA cleavage at the target site and induces few off-target reactions because of its high sequence specificity. Powerful and variable tools using TALENs can be used in practical applications and may facilitate the molecular breeding of many plant species. We have developed a convenient construction system for a plant TALEN vector named the Emerald Gateway TALEN system. In this study, we added new properties to this system, which led to an increase in the efficiency of targeted mutagenesis. Rice dMac3 is a translational enhancer that highly increases the efficiency of translation of the downstream ORF. We inserted dMac3 into the 5' untranslated region of the TALEN gene. In the cultured rice cells to which the TALEN gene was introduced, the frequency of targeted mutagenesis was highly increased compared with those altered using the conventional system. Next, the promoter for the TALEN gene was replaced with iPromoter, and its expression was stringently controlled by a GVG transcription factor that was activated in the presence of glucocorticoid. This conditional expression system worked effectively and led to a higher frequency of targeted mutagenesis than that by the constitutive expression system, while no mutagenesis was detected without glucocorticoid treatment. These results suggest that our system can be applied to genome editing to create the desired mutation.


Subject(s)
Gene Editing , Oryza/genetics , Plants, Genetically Modified/genetics , Transcription Activator-Like Effector Nucleases/genetics , Genetic Vectors/genetics , Mutagenesis , Mutation , Oryza/growth & development , Plants, Genetically Modified/growth & development , Regulatory Sequences, Nucleic Acid/genetics
2.
Sci Rep ; 8(1): 13753, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214055

ABSTRACT

CRISPR/Cas9 is a programmable nuclease composed of the Cas9 protein and a guide RNA (gRNA) molecule. To create a mutant potato, a powerful genome-editing system was required because potato has a tetraploid genome. The translational enhancer dMac3, consisting of a portion of the OsMac3 mRNA 5'-untranslated region, greatly enhanced the production of the protein encoded in the downstream ORF. To enrich the amount of Cas9, we applied the dMac3 translational enhancer to the Cas9 expression system with multiple gRNA genes. CRISPR/Cas9 systems targeting the potato granule-bound starch synthase I (GBSSI) gene examined the frequency of mutant alleles in transgenic potato plants. The efficiency of the targeted mutagenesis strongly increased when the dMac3-installed Cas9 was used. In this case, the ratio of transformants containing four mutant alleles reached approximately 25% when estimated by CAPS analysis. The mutants that exhibited targeted mutagenesis in the GBSSI gene showed characteristics of low amylose starch in their tubers. This result suggests that our system may facilitate genome-editing events in polyploid plants.


Subject(s)
Plants, Genetically Modified/genetics , RNA, Guide, Kinetoplastida/genetics , Solanum tuberosum/genetics , Starch Synthase/genetics , Alleles , CRISPR-Cas Systems/genetics , Gene Editing , Genetic Vectors/genetics , Mutagenesis/genetics , Plants, Genetically Modified/growth & development , Regulatory Sequences, Nucleic Acid/genetics , Solanum tuberosum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...