Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 47(7): 46, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965101

ABSTRACT

Latex paint is an aqueous dispersion of nano-sized polymer particles that can form a thin film by itself or mixed with rigid particles. We have developed an apparatus that can simultaneously measure drying rate and stress generation and have investigated the film formation process of a latex-only coating layer under convection drying. In the present study, we adopted the same method to investigate the film formation process of the silica-latex coating layer. As a result, we were able to systematically correlate the drying rate change by the equivalent thickness of latex particles accumulated with silica particles at the drying surface. Furthermore, it is unveiled that the drying rate in the former stage depends on drying temperature, while the drying rate changed to be dominated by silica content after the particle-packing layer was formed over the entire coating layer. On the other hand, the model we proposed for stress generation, considering the temperature effect on latex deformability, was found to be applicable to the present experimental system by replacing a portion of deformable particles with rigid particles.

2.
Ultrason Sonochem ; 96: 106443, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37216790

ABSTRACT

This study synthesized UiO-66, a typical Zr-Metal Organic Framework (MOF), by using an ultrasound-assisted synthesis method to reduce the synthesis time. This method was short-time ultrasound irradiation at the initial stage of the reaction. As compared with average particle size of conventional solvothermal method (=192 nm), averaged particle size by the ultrasound-assisted synthesis method showed particle sizes that were smaller on average, ranging from 56 to 155 nm. In order to compare the relative reaction rates of the solvothermal method and the ultrasound-assisted synthesis method, the cloudiness of the reaction solution in the reactor was observed with a video camera, and the luminance was calculated from the images obtained by the video camera. It was found that the ultrasound-assisted synthesis method showed a faster increase in luminance and shorter induction time than the solvothermal method. The slope of the luminance increase during the transient period was also found to become increase with the addition of ultrasound, which also affects the growth of particles. Observation of the aliquoted reaction solution confirmed that particle growth was faster in the ultrasound-assisted synthesis method than in the solvothermal method. Numerical simulations were also performed using MATLAB ver. 5.5 to analyze the unique reaction field generated by ultrasound. Bubble radius and temperature inside a cavitation bubble was obtained using the Keller-Miksis equation, which reproduces the motion of a single bubble. The bubble radius expanded and contracted repeatedly according to the ultrasound sound pressure, and eventually collapsed. The temperature at the time of collapse was extremely high, exceeding 17,000 K. It was confirmed that the high-temperature reaction field generated by ultrasound irradiation promoted nucleation, leading to a reduction in particle size and induction time.

3.
Eur Phys J E Soft Matter ; 45(1): 2, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35006390

ABSTRACT

Latex paints are widely used, and many researchers pointed out that the film formation process depends on the deformability of dispersed polymer particles. However, the relationship between the film formation process and drying rate has not been totally understood due to the lack of accurate data on drying rate throughout the drying process. In the present study, we measured the drying rate of latex coating by the temperature change method proposed by Imakoma in convective drying. We revealed that the drying process significantly depends on particle deformability, especially in the former stage of the falling drying rate period. At a low drying temperature, the close-packed structure of polymer particles is formed throughout the film at the end of the constant drying rate period. On the other hand, partially deformed soft particles due to wet sintering inhibit the drying rate even under high moisture content at high drying temperatures. In either case, after forming the closest-packed structure, the shrinkage of the gap space between particles due to capillary deformation decreases the drying rate, proportional to the moisture content.


Subject(s)
Convection , Latex , Desiccation , Hot Temperature , Polymers
4.
Small ; 15(18): e1900019, 2019 05.
Article in English | MEDLINE | ID: mdl-30892830

ABSTRACT

Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.


Subject(s)
Liquid Crystals , Cell Physiological Phenomena , Phase Transition , Static Electricity
5.
Ultrason Sonochem ; 52: 157-163, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30477794

ABSTRACT

This study investigated the position of ultrasonic irradiation source and reactor geometry on fragmentation rate of a layered compound, α-zirconium phosphate (α-ZrP). By numerically solving the acoustic pressure distribution using COMSOL Multiphysics®, it is clarified the mechanism whereby the operating factors influenced the α-ZrP dispersion to make a suggestion of guideline of the process design method. Two vessels made of glass with a flat-bottom and a spherical-bottom, respectively, were used. Although the flat-bottom vessel at lower horn position showed the best performance of fragmentation, the region of high acoustic pressure field in the flat bottom vessel sharply narrowed and the transmittance became prominently low. On the other hand, no significant difference of the transmittance value in the spherical bottom vessel between the cases of low and high horn positions could be observed and the spherical bottom vessel was robust for the horn position. These results suggest that not only the magnitude of acoustic pressure but also the size of high acoustic pressure region is also an important factor and a spherical bottom vessel is one of suitable shape which gives large size of high acoustic pressure region regardless of the horn position.

6.
Biosci Biotechnol Biochem ; 81(4): 755-761, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28142332

ABSTRACT

In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.


Subject(s)
Food Analysis , Starch/chemistry , Hydrolysis , Water/chemistry
7.
Ultrason Sonochem ; 31: 337-41, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964957

ABSTRACT

This study investigated the effect of pretreatment of ultrasonic irradiation on emulsion polymerization of styrene to propose a process intensification method which gives high conversion, high reaction rate, and high energy efficiency. The solution containing styrene monomer was irradiated by a horn mounted on the ultrasonic transducer with the diameter of 5mm diameter and the frequency of 28 kHz before starting polymerization. The pretreatment of ultrasound irradiation as short as 1 min drastically improved monomer dispersion and increased reaction rate even under the agitation condition with low rotational speed of impeller. Furthermore, the ultrasonic pretreatment resulted in higher monomer concentration in polymer particles and produced larger polymer particles than conventional polymerization without ultrasonic pretreatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...