Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(2): 02A912, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931973

ABSTRACT

In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

2.
Opt Lett ; 25(1): 10-2, 2000 Jan 01.
Article in English | MEDLINE | ID: mdl-18059765

ABSTRACT

A new method of optical guidance by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary is proposed. An imploding plasma column has a concave electron-density profile in the radial direction, just before a stagnation phase driven by a converging current sheet and a shock wave. The feasibility of optical guidance of a high-intensity (>1 x 10(17) W/cm(2)) Ti:sapphire laser pulse by use of this method over a distance of 2 cm, corresponding to 12.5 times the Rayleigh length, has been experimentally demonstrated. The guiding-channel formation process was directly probed with a He-Ne laser beam. The electron density in the fully ionized channel was estimated to be 2.0 x 10(17) cm(-3) on the axis and 7.0 x 10(17) cm(-3) on the peaks of the channel edge, with a diameter of 70 mum, as indicated by the experimental results, which were corroborated by a magnetohydrodynamics simulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...