Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30521, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726104

ABSTRACT

Background: Magnetic resonance spectroscopy (MRS) is an imaging technique used to measure metabolic changes in the tissue. Due to the lack of evidence, MRS is not a priority in diagnosing neurodegenerative diseases because it is a relatively specialized technique that requires specialized equipment and expertise to perform and interpret. This systematic review aimed to present a comprehensive collection of MRS results in the most common neurodegenerative diseases. Methods: A systematic search of four electronic databases (PubMed, Scopus, Web of Science, and ScienceDirect) was conducted for studies published from 2017 to 2022. Articles that provided specific biomarker levels were selected, and studies that assessed the diseases via treatment, featured MRS applying nuclei other than 1H, or compared different animal models were excluded. Results: A total of 25 articles, plus 3 articles for extra information in the introduction, were included in this review. Six of the most common neurodegenerative diseases, i.e., Alzheimer's and Parkinson's disease, Huntington chorea, ataxia, multiple sclerosis (MS), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) were examined via MRS. The changes and ratios of N-acetylaspartate (NAA) could be seen in all of these disorders, which could lead to early diagnosis. However, there are other biomarkers, such as Cr and Chon, which can give convincing results. Discussion: This observational study is the first synthesis of the latest evidence proving metabolic changes during neurodegenerative diseases using MRS as a diagnosis method. The findings indicate decreased N-acetylaspartate (NAA) and NAA/Cr ratios in Alzheimer's disease (AD), Parkinson's disease (PD), ataxias, and MS, reflecting neuronal loss or dysfunction. Increased choline and myo-inositol were noted in some studies, suggesting cell membrane turnover and neuroinflammation. Findings were less consistent for other metabolites like glutamate and gamma-aminobutyric acid. However, there were limitations due to the lack of studies on the same volumes of interest (VOIs) and the small number of participants.

2.
Photochem Photobiol Sci ; 23(2): 225-243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300466

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment. The present study aims to introduce a combined treatment method of making PCL scaffolds as microenvironments, seeded with CeONPs and the PBMT technique for SCI treatment. METHODS: The surgical hemi-section was used to induce SCI. Immediately after the SCI induction, the scaffold (Sc) was loaded with CeONPs implanted. PBMT began 30 min after SCI induction and lasted for up to 4 weeks. Fifty-six male rats were randomly divided into seven groups. Glial fibrillary acidic protein (GFAP) (an astrocyte marker), Connexin 43 (Con43) (a member of the gap junction), and gap junctions (GJ) (a marker for the transfer of ions and small molecules) expressions were evaluated. The behavioral evaluation was performed by BBB, Acetone, Von Frey, and radiant heat tests. RESULT: The SC + Nano + PBMT group exhibited the most remarkable recovery outcomes. Thermal hyperalgesia responses were mitigated, with the combined approach displaying the most effective relief. Mechanical allodynia and cold allodynia responses were also attenuated by treatments, demonstrating potential pain management benefits. CONCLUSION: These findings highlight the potential of PBMT, combined with CeONPs-loaded scaffolds, in promoting functional motor recovery and alleviating pain-related responses following SCI. The study underscores the intricate interplay between various interventions and their cumulative effects, informing future research directions for enhancing neural repair and pain management strategies in SCI contexts.


Subject(s)
Cerium , Low-Level Light Therapy , Spinal Cord Injuries , Rats , Male , Animals , Low-Level Light Therapy/adverse effects , Pain/complications , Spinal Cord Injuries/radiotherapy , Spinal Cord Injuries/complications , Hyperalgesia
3.
Sci Rep ; 10(1): 20006, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203925

ABSTRACT

Mesenchymal stem cells are mechano-sensitive cells with the potential to restore the function of damaged tissues. Low-intensity ultrasound has been increasingly considered as a bioactive therapeutic apparatus. Optimizing transplantation conditions is a critical aim for radiation-induced skin tissue injury. Therefore, the therapeutic function of adipose-derived mesenchymal stem cells to ultrasound stimulus was examined based on the mechanical index (MI). Mesenchymal stem cells were isolated from the adipose tissues of mature guinea pigs. An ultrasound system (US) was constructed with a 40 kHz frequency. The radiation-induced skin injury model was produced on the abdominal skin of guinea pigs by 60 Gy of radiation. Then, they were divided to 7 groups (n = 42): control, sham, US (MI = 0.7), AdMSCs injection, US AdMSCs (AdMSCs, under US with MI = 0.2), AdMSCs + US (AdMSCs transplantation and US with MI = 0.7) and US AdMSCs + US (combining the last two groups). The homing of stem cells was verified with fluorescence imaging. The groups were followed with serial photography, ultrasound imaging, tensiometry, and histology. The thickness of the skin was analyzed. Functional changes in skin tissue were evaluated with Young's modulus (kPa). One-way ANOVA tests were performed to analyze differences between treatment protocols (p < 0.05). The results of Kumar's score showed that radiation injury was significantly lower in the treatment groups of US AdMSCs and US AdMSCs + US than other groups after 14 days (p < 0.05). There was a significant difference in skin thickness between treatment groups with control, sham, and US groups after 60 Gy radiation and were closer to the thickness of healthy skin. Young's modulus in US AdMSCs + US, US AdMSCs, and AdMSCs + US groups demonstrated a significant difference with the other groups (p < 0.05). Young's modulus in US AdMSCs + US and US AdMSCs treatment groups were closer to Young's modulus of the healthy skin. The histological results confirmed the improvement of acute radiation damage in the combined treatment method, especially in US AdMSCs + US and US AdMSCs groups with increasing the epithelialization and formation of collagen. An ultrasonic treatment plan based on a mechanical index of the target medium could be used to enhance stem cell therapy.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Radiation Injuries, Experimental/therapy , Skin/pathology , Skin/radiation effects , Ultrasonic Therapy/methods , Adipose Tissue/cytology , Animals , Collagen/metabolism , Combined Modality Therapy , Elasticity , Guinea Pigs , Microscopy, Fluorescence , Radiation Injuries, Experimental/metabolism , Radiotherapy/adverse effects , Re-Epithelialization , Skin/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...