Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Earth Environ ; 4(35): 1-8, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-37325084

ABSTRACT

Changes in nitrogen (N) availability affect the ability for forest ecosystems to store carbon (C). Here we extend an analysis of the growth and survival of 94 tree species and 1.2 million trees, to estimate the incremental effects of N deposition on changes in aboveground C (dC/dN) across the contiguous U.S. (CONUS). We find that although the average effect of N deposition on aboveground C is positive for the CONUS (dC/dN=+9 kg C per kg N), there is wide variation among species and regions. Furthermore, in the Northeastern U.S. where we may compare responses from 2000-2016 with those from the 1980s-90s, we find the recent estimate of dC/dN is weaker than from the 1980s-90s due to species-level changes in responses to N deposition. This suggests that the U.S. forest C-sink varies widely across forests and may be weakening overall, possibly necessitating more aggressive climate policies than originally thought.

2.
Environ Res Lett ; 16(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33747119

ABSTRACT

Ecosystems require access to key nutrients like nitrogen (N) and sulfur (S) to sustain growth and healthy function. However, excessive deposition can also damage ecosystems through nutrient imbalances, leading to changes in productivity and shifts in ecosystem structure. While wildland fires are a known source of atmospheric N and S, little has been done to examine the implications of wildland fire deposition for vulnerable ecosystems. We combine wildland fire emission estimates, atmospheric chemistry modeling, and forest inventory data to (a) quantify the contribution of wildland fire emissions to N and S deposition across the U S, and (b) assess the subsequent impacts on tree growth and survival rates in areas where impacts are likely meaningful based on the relative contribution of fire to total deposition. We estimate that wildland fires contributed 0.2 kg N ha-1 yr-1 and 0.04 kg S ha-1 yr-1 on average across the U S during 2008-2012, with maxima up to 1.4 kg N ha-1 yr-1 and 0.6 kg S ha-1 yr-1 in the Northwest representing over ~30% of total deposition in some areas. Based on these fluxes, exceedances of S critical loads as a result of wildland fires are minimal, but exceedances for N may affect the survival and growth rates of 16 tree species across 4.2 million hectares, with the most concentrated impacts occurring in Oregon, northern California, and Idaho. Understanding the broader environmental impacts of wildland fires in the U S will inform future decision making related to both fire management and ecosystem services conservation.

4.
PLoS One ; 13(10): e0205296, 2018.
Article in English | MEDLINE | ID: mdl-30335770

ABSTRACT

Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through multiple mechanisms that vary among tree species. Prior studies have estimated the effects of atmospheric N deposition on temperate forests by leveraging forest inventory measurements across regional gradients in deposition. However, in the United States (U.S.), these previous studies were limited in the number of species and the spatial scale of analysis, and did not include sulfur (S) deposition as a potential covariate. Here, we present a comprehensive analysis of how tree growth and survival for 71 species vary with N and S deposition across the conterminous U.S. Our analysis of 1,423,455 trees from forest plots inventoried between 2000 and 2016 reveals that the growth and/or survival of the vast majority of species in the analysis (n = 66, or 93%) were significantly affected by atmospheric deposition. Species co-occurred across the conterminous U.S. that had decreasing and increasing relationships between growth (or survival) and N deposition, with just over half of species responding negatively in either growth or survival to increased N deposition somewhere in their range (42 out of 71). Averaged across species and conterminous U.S., however, we found that an increase in deposition above current rates of N deposition would coincide with a small net increase in tree growth (1.7% per Δ kg N ha-1 yr-1), and a small net decrease in tree survival (-0.22% per Δ kg N ha-1 yr-1), with substantial regional and among-species variation. Adding S as a predictor improved the overall model performance for 70% of the species in the analysis. Our findings have potential to help inform ecosystem management and air pollution policy across the conterminous U.S., and suggest that N and S deposition have likely altered forest demographics in the U.S.


Subject(s)
Models, Statistical , Nitrogen/metabolism , Sulfur/metabolism , Trees/metabolism , Carbon/chemistry , Carbon/metabolism , Computer Simulation , Forests , Nitrogen/chemistry , Soil/chemistry , Sulfur/chemistry , Trees/chemistry , Trees/growth & development , United States
5.
J Forensic Sci ; 59(4): 1046-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24666117

ABSTRACT

When searching underwater crime scenes or disaster scenes for fragmentary human remains, it may be advantageous for forensic divers to be able to detect the presence of bones and teeth among other marine materials (such as shells and rocks). In terrestrial environments, this can typically be accomplished by visual and instrumental methods, but underwater conditions make it difficult to employ detection and sorting techniques in these environments. This study investigates fluorescence of bones and teeth and other marine materials using a submersible alternate light source (ALS) and concludes that an ALS can be a useful tool for detecting bones and teeth in underwater searches as well in terrestrial searches and laboratory environments. The results could impact the methods and equipment used by forensic divers and forensic anthropologists when searching for skeletal remains, potentially increasing the quantity and efficiency of forensic evidence recovered.


Subject(s)
Bone and Bones , Fluorescence , Immersion , Light , Tooth , Animals , Forensic Anthropology/methods , Fresh Water , Humans , Oceans and Seas
6.
Tree Physiol ; 31(6): 582-91, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21602559

ABSTRACT

Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.


Subject(s)
Abies/growth & development , Populus/growth & development , Soil/chemistry , Abies/metabolism , Adaptation, Physiological , Animals , Biota , Hydroxybenzoates/metabolism , Insecta/physiology , Photosynthesis , Plant Growth Regulators/biosynthesis , Plant Roots/growth & development , Plant Shoots/growth & development , Populus/metabolism , Populus/parasitology , Proanthocyanidins/biosynthesis , Seedlings/growth & development , Sunlight , Trees/growth & development , Utah
SELECTION OF CITATIONS
SEARCH DETAIL
...