Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 155(2): 348-362, 2017 02.
Article in English | MEDLINE | ID: mdl-27864544

ABSTRACT

BMS-986094, a 2'-C-methylguanosine prodrug that was in development for treatment of chronic hepatitis C infection was withdrawn from Phase 2 clinical trials because of unexpected cardiac and renal adverse events. Investigative nonclinical studies were conducted to extend the understanding of these findings using more comprehensive endpoints. BMS-986094 was given orally to female CD-1 mice (25 and 150 mg/kg/d) for 2 weeks (53/group) and to cynomolgus monkeys (15 and 30 mg/kg/d) for up to 6 weeks (2-3/sex/group for cardiovascular safety, and 5/sex/group for toxicology). Endpoints included toxicokinetics; echocardiography, telemetric hemodynamics and electrocardiography, and tissue injury biomarkers (monkey); and light and ultrastructural pathology of heart, kidney, and skeletal muscle (mouse/monkey). Dose-related and time-dependent findings included: severe toxicity in mice at 150 mg/kg/d and monkeys at 30 mg/kg/d; decreased left ventricular (LV) ejection fraction, fractional shortening, stroke volume, and dP/dt; LV dilatation, increased QTc interval, and T-wave flattening/inversion (monkeys at ≥ 15 mg/kg/d); cardiomyocyte degeneration (mice at 150 mg/kg/d and monkeys at ≥ 15 mg/kg/d) with myofilament lysis/myofbril disassembly; time-dependent proteinuria and increased urine ß-2 microglobulin, calbindin, clusterin; kidney pallor macroscopically; and tubular dilatation (monkeys); tubular regeneration (mice 150 mg/kg/d); and acute proximal tubule degeneration ultrastructurally (mice/monkeys); and skeletal muscle degeneration with increased urine myoglobin and serum sTnI. These studies identified changes not described previously in studies of BMS-986094 including premonitory cardiovascular functional changes as well as additional biomarkers for muscle and renal toxicities. Although the mechanism of potential toxicities observed in BMS-986094 studies was not established, there was no evidence for direct mitochondrial toxicity.


Subject(s)
Guanosine Monophosphate/analogs & derivatives , Heart/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Female , Guanosine Monophosphate/therapeutic use , Guanosine Monophosphate/toxicity , Heart/physiology , Hepatitis C, Chronic/drug therapy , Kidney/drug effects , Macaca fascicularis , Male , Mice , Muscle, Skeletal/drug effects , Toxicokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...