Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4533, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500667

ABSTRACT

Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.


Subject(s)
Glioma , Child , Humans , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Cell Line , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Biomarkers
2.
Neuro Oncol ; 25(11): 2087-2097, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37075810

ABSTRACT

BACKGROUND: The international, multicenter registry LOGGIC Core BioClinical Data Bank aims to enhance the understanding of tumor biology in pediatric low-grade glioma (pLGG) and provide clinical and molecular data to support treatment decisions and interventional trial participation. Hence, the question arises whether implementation of RNA sequencing (RNA-Seq) using fresh frozen (FrFr) tumor tissue in addition to gene panel and DNA methylation analysis improves diagnostic accuracy and provides additional clinical benefit. METHODS: Analysis of patients aged 0 to 21 years, enrolled in Germany between April 2019 and February 2021, and for whom FrFr tissue was available. Central reference histopathology, immunohistochemistry, 850k DNA methylation analysis, gene panel sequencing, and RNA-Seq were performed. RESULTS: FrFr tissue was available in 178/379 enrolled cases. RNA-Seq was performed on 125 of these samples. We confirmed KIAA1549::BRAF-fusion (n = 71), BRAF V600E-mutation (n = 12), and alterations in FGFR1 (n = 14) as the most frequent alterations, among other common molecular drivers (n = 12). N = 16 cases (13%) presented rare gene fusions (eg, TPM3::NTRK1, EWSR1::VGLL1, SH3PXD2A::HTRA1, PDGFB::LRP1, GOPC::ROS1). In n = 27 cases (22%), RNA-Seq detected a driver alteration not otherwise identified (22/27 actionable). The rate of driver alteration detection was hereby increased from 75% to 97%. Furthermore, FGFR1 internal tandem duplications (n = 6) were only detected by RNA-Seq using current bioinformatics pipelines, leading to a change in analysis protocols. CONCLUSIONS: The addition of RNA-Seq to current diagnostic methods improves diagnostic accuracy, making precision oncology treatments (MEKi/RAFi/ERKi/NTRKi/FGFRi/ROSi) more accessible. We propose to include RNA-Seq as part of routine diagnostics for all pLGG patients, especially when no common pLGG alteration was identified.


Subject(s)
Glioma , Proto-Oncogene Proteins B-raf , Child , Humans , Proto-Oncogene Proteins B-raf/genetics , Pathology, Molecular , Protein-Tyrosine Kinases , RNA-Seq , Proto-Oncogene Proteins/genetics , Precision Medicine , Glioma/pathology , DNA-Binding Proteins/genetics , Transcription Factors/genetics
3.
Clin Exp Rheumatol ; 40(2): 433-442, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33124555

ABSTRACT

OBJECTIVES: To describe a German cohort of patients with juvenile dermatomyositis (JDM) and to evaluate clinical manifestations, disease course and prognosis in JDM patients with a certain myositis-specific autoantibody. METHODS: Cross-sectional data on patients with JDM documented in the National Paediatric Rheumatologic Database in Germany between 2014 and 2016 were analysed. In a subgroup of the cohort, MSAs were determined with a commercial multiplex array, and a retrospective chart review was conducted to specify the clinical phenotype and patient outcome. RESULTS: The total cohort consisted of 196 patients with JDM (mean age 12.2±4.0 years, mean disease duration 5.1±3.8 years, 70% female). Apart from typical skin changes and muscle weakness, 41% of patients also had arthritis and/or contractures, 27% had calcinosis and approximately 10% had interstitial lung disease. Immunoblot testing was performed on the sera of 91 (46%) patients, detecting MSAs in 44% of patients. Patient groups with specific MSAs differed in clinical characteristics such as calcinosis, dysphagia, and lung and joint involvement. The extent of muscle weakness evaluated by the Childhood Myositis Assessment Scale was significantly associated with an increased level of creatine kinase. Patients with anti-MDA5 were particularly affected by polyarthritis of the small joints. After 5 years, 51 patients of the MSA cohort (56.0%) achieved an inactive disease state, 12/51 (23.5%) were off therapy. CONCLUSIONS: Patients with JDM in Germany show a broad spectrum of clinical manifestations that can be grouped into homogeneous groups using MSA, which also helps to predict the course and prognosis of the disease.


Subject(s)
Dermatomyositis , Myositis , Adolescent , Autoantibodies , Child , Cross-Sectional Studies , Dermatomyositis/complications , Female , Humans , Male , Myositis/complications , Phenotype , Retrospective Studies
4.
Front Neurol ; 13: 1113811, 2022.
Article in English | MEDLINE | ID: mdl-36703628

ABSTRACT

Biallelic variants in the kaptin gene KPTN were identified recently in individuals with a novel syndrome referred to as autosomal recessive intellectual developmental disorder 41 (MRT41). MRT41 is characterized by developmental delay, predominantly in language development, behavioral abnormalities, and epilepsy. Only about 15 affected individuals have been described in the literature, all with primary or secondary macrocephaly. Using exome sequencing, we identified three different biallelic variants in KPTN in five affected individuals from three unrelated families. In total, two KPTN variants were already reported as a loss of function variants. A novel splice site variant in KPTN was detected in two unrelated families of this study. The core phenotype with neurodevelopment delay was present in all patients. However, macrocephaly was not present in at least one patient. In total, two patients exhibited developmental and epileptic encephalopathies with generalized tonic-clonic seizures that were drug-resistant in one of them. Thus, we further delineate the KPTN-related syndrome, especially emphasizing the severity of epilepsy phenotypes and difficulties in treatment in patients of our cohort.

SELECTION OF CITATIONS
SEARCH DETAIL
...