Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31857782

ABSTRACT

Replacing normal metal NMR coils with thin-film high-temperature superconductor (HTS) resonators can significantly improve the sensitivity of analytical NMR. To study the use of these resonators for excitation as well as detection, we investigated the radio frequency properties of the HTS NMR coils in both frequency and time domain at a variety of transmit power levels. Experiments were conducted on a double-sided, counter wound spiral resonator designed to detect NMR signals from 13C nuclei at 14.1 T. Power-dependent nonlinearity was observed in the transmission coefficient and quality factor. The ability of the HTS resonators to accurately generate short pulses was studied in the time domain over the range power levels. The results of this study show that some form of Q switching is needed to get good transmit performance from HTS coils for 13C. For that purpose, the effect of adding a shorted transmission line stub to improve the pulse shapes and reduce phase transients was studied.

2.
Phys Rev Lett ; 120(8): 086602, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543023

ABSTRACT

Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

3.
Anal Chem ; 83(18): 7061-5, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21842845

ABSTRACT

An ultrasensitive fluorescent sensor based on the quantum dot/DNA/gold nanoparticle ensemble has been developed for detection of mercury(II). DNA hybridization occurs when Hg(II) ions are present in the aqueous solution containing the DNA-conjugated quantum dots (QDs) and Au nanoparticles. As a result, the QDs and the Au nanoparticles are brought into the close proximity, which enables the nanometal surface energy transfer (NSET) from the QDs to the Au nanoparticles, quenching the fluorescence emission of the QDs. This nanosensor exhibits a limit of detection of 0.4 and 1.2 ppb toward Hg(II) in the buffer solution and in the river water, respectively. The sensor also shows high selectivity toward the Hg(II) ions.


Subject(s)
Gold/chemistry , Mercury/analysis , Metal Nanoparticles/chemistry , Quantum Dots , Spectrometry, Fluorescence/methods , DNA/chemistry , Energy Transfer , Fluorescent Dyes/chemistry , Ions/chemistry , Nucleic Acid Hybridization , Surface Properties
4.
IEEE Trans Syst Man Cybern B Cybern ; 37(5): 1176-90, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17926701

ABSTRACT

The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.


Subject(s)
Algorithms , Artifacts , Biometry/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Iris/anatomy & histology , Pattern Recognition, Automated/methods , Subtraction Technique , Artificial Intelligence , Humans , Information Storage and Retrieval/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...